ВАЖНЫЕ НОВОСТИ
В России разрабатывается всестороннее цифровое решение для возведения сложных промышленных объектов

В России будет создано комплексное национальное решение в сфере технологий информационного моделирования (ТИМ) для строительства сложных промышленных объектов. Для этого объединяются усилия отечественных компаний-разработчиков, индустриальных заказчиков и профильных органов исполнительной власти. Координатором проекта выступит Госкорпорация «Росатом». Площадкой дальнейшего обсуждения проекта ст...

Минпромторг России проводит конкурсный отбор для возмещения расходов на беспилотные авиационные системы (БАС)

Министерство промышленности и торговли Российской Федерации объявляет отбор на право компенсации части затрат на полеты беспилотных авиационных систем их эксплуатантам. Поддержка будет оказываться в форме субсидий в рамках федерального проекта «Стимулирование спроса на отечественные беспилотные авиационные системы» (входит в состав национального проекта «Беспилотные авиационные системы») в целя...

"Ростех" завершил подготовку нового стартового комплекса для ракеты-носителя "Ангара-А5" перед проведением летных испытаний

Монтажно-технологическое управление "Альтаир", входящее в структуру холдинга "Росэлектроника" Госкорпорации Ростех, успешно завершило наладку важных систем жизнеобеспечения и работоспособности стартового комплекса ракеты-носителя тяжелого класса "Ангара-А5" на космодроме "Восточный". В рамках проекта специалисты установили около полутора тысяч единиц разнообразного оборудования и проложили более м...

В Министерстве цифрового развития России состоялось заседание Государственной комиссии по радиочастотам (ГКРЧ)

Поступила первая заявка на выделение полос для гибридных сетей связи В Государственную комиссию по радиочастотам (ГКРЧ) поступила просьба от компании МТС о выделении частотного диапазона 1920-1980/2110-2170 МГц для тестирования новых гибридных сетей связи. Эти инновационные сети предоставляют возможность объединения земных станций и спутниковых каналов на основе единого стандарта, обеспечивая р...

На совещании, которое провел Денис Мантуров, обсудили развитие отечественной станкоинструментальной промышленности

В Координационном Центре Правительства Российской Федерации состоялось совещание о развитии станкоинструментальной промышленности под председательством заместителя Председателя Правительства Российской Федерации – Министра промышленности и торговли Российской Федерации Дениса Мантурова и заместителя Председателя Правительства Российской Федерации Дмитрия Чернышенко. В мероприятии приняли уча...

В Нижегородской области принята Стратегия развития кластера индустрии товаров для детей

В Нижегородской области запущен кластер индустрии детских товаров в соответствии с регламентом развития сектора на 2023–2024 годы, утвержденным решением Правительства этого региона. Основная цель стратегии заключается в формировании кластера индустрии детских товаров в Нижегородской области, в который входят малые и средние предприятия, крупные компании, научные и образовательные учрежден...

12 Декабря 2009

Синтез ультрананокристаллических пленок в СВЧ плазме: возможность изготовления слоистых структур

Синтез ультрананокристаллических пленок в СВЧ плазме: возможность изготовления слоистых структур

Автoры:
А.В. Савельев ООО «Оптocиcтемы», г. Трoицк Инcтитут oбщей физики им. A.M. Прoхoрoва РАН, г. Мocква
В.Г. Ральченкo, И.И. Влаcoв, А.П. Бoльшакoв Инcтитут oбщей физики им. A.M. Прoхoрoва РАН, г. Мocква
С.К. Вартапетoв ООО «Оптocиcтемы», г. Трoицк

1-е меcто в конкурcе работ молодых ученых в облаcти нанотехнологий в cекции «Нанотехнологии в энергетике, наномеханика и наноплазма»

Метод оcаждения алмаза из газовой фазы (chemical vapor deposition — CVD) позволяет получать пленки и плаcтины c размером криcталлитов от нанометров до ~  1 cм. Поликриcталлические пленки возможно синтезировать на подложках диаметром более 100 мм [1]. Наиболее чистый материал выращивают, как правило, в СВЧ плазме в смесях метан-водород.

Пленки ультрананокристаллического алмаза (УНКА) с размером зерна 2—10 нм обладают рядом уникальных свойств. Сохраняя механические свойства, сравнимые с алмазом, такие пленки обладают низкой шероховатостью, низким коэффициентом трения, биосовместимостью, химической стойкостью. Пленки УНКА, синтезированные в среде, обогащенной азотом, приобретают высокую проводимость, что интересно для применений в электронике и электрохимии [2,3].

Вариацией условий синтеза возможно в одной CVD системе выращивать как нано-, так и микрокристаллические алмазные (МКА) пленки, а также комбинированные, в т.ч. градиентные (по размеру зерна) структуры. В настоящей работе получены двухслойные пленки УНКА-МКА с контролируемым (субмикронным) размером кристаллитов.

Алмазные пленки выращивали на подложках кремния в СВЧ-плазмо-химическом реакторе УПСА-100 с максимальной СВЧ мощностью 5 кВт на частоте 2,45 ГГц (рис. 1). Перед осаждением подложки обрабатывали в ультразвуковой ванне в спиртовой суспензии порошка ультрадисперсного детонационного алмаза (УДА) для формирования зародышей CVD-алмаза.

Рост УНКА (первый слой) проводили в смеси Аr-СН4(2%)-Н2)5%) при давлении 90 Торр и общем расходе газов 1000 см3/мин. При температуре подложки 800°С скорость осаждения составляла 0,4-0,5 мкм/ч, время роста слоя -2 ч.

Как правило, при синтезе наноалмазных пленок используется дополнительный электрический подогрев подложки. В отличие от работ [4], была применена пассивная система распределения тепла в подложкодержателе, позволившая максимально использовать СВЧ мощность установки, и рабочая мощность в эксперименте составляла 2,3 кВт, тогда как при электрическом подогреве мощность СВЧ излучения составляет 600—1200 Вт.

Первичный слой УНКА служит платформой для последующего (локально эпитаксиального) наращивания следующего (микрокристаллического) слоя. На этой второй стадии процесса спользовали газовую смесь Н2(96%) — СН4(4%), резко изменяя плазмохимию и свечение плазмы (рис. 2).

Мощность СВЧ излучения увеличивали при этом до 4,2 кВт, а температуру подложки до 850 °С.

В пленке УНКА размер частиц не превышает 10 нм согласно наблюдениям в растровом электронном микроскопе (рис. 3, с). Размер кристаллитов не зависит от времени осаждения (толщины пленки) ввиду интенсивного процесса вторичной нукле-ации алмаза, не дающей зернам разрастаться. Напротив, при осаждении второго слоя (МКА) формируются ограненные колончатые кристаллиты, постепенно увеличивающиеся в размерах (рис. 3, б—г). Так, после 1 мин роста размеры кристаллитов увеличился до 30—50 нм, а через 30 мин пленка выглядит поликристаллической с размером зерна порядка 0,5 мкм.

Рост кристаллитов происходит строго линейно во времени (рис. 4, а) со скоростью 17 нм/мин. Таким образом, размер зерна алмазного покрытия можно регулировать в интервале 10—100 нм просто выбором времени осаждения второго слоя в интервале 1—5 мин. При этом сохраняется высокая равномерность в толщине пленки.

Модификация структуры проявляется в спектрах Рамановского рассеяния (рис. 4, б). Спектры сняты при возбуждении рассеяния на длине волны 488 нм. Интенсивность алмазного пика на частоте 1333 см-1 монотонно возрастает со временем, т.е. с толщиной второго слоя, который является в сущности поликристаллическим, но с субмикронным размером зерна.

Таким образом, реализован рост слоистых структур наномикрокристаллических пленок, что регулирует размер зерна, шероховатость, теплопроводность, оптические, электрические и другие свойства алмазных покрытий.

Материал из сборника тезисов докладов участников Второго международного конкурса научных работ молодых ученых в области нанотехнологий

Работа выполнена при поддержке Федерального агентства по науке и инновациям, контракт №02.523.12.3010

Кол-во просмотров: 13786
Яндекс.Метрика