ВАЖНЫЕ НОВОСТИ
Эксперты обсудили вопросы развития электронного машиностроения в России

Эксперты радиоэлектронной отрасли обсудили вопросы развития электронного машиностроения в рамках заседания Экспертного совета по развитию электронной и радиоэлектронной промышленности при Комитете Госдумы по промышленности и торговле под председательством генерального директора Объединенной приборостроительной корпорации (управляющей компании холдинга «Росэлектроника» Госкорпорации Ростех) Сергея ...

Минпромторг России представил проект Стратегии развития реабилитационной индустрии Российской Федерации на период до 2030 года

В рамках Российской недели здравоохранения состоялась презентация подготовленного Минпромторгом России проекта Стратегии развития реабилитационной индустрии Российской Федерации на период до 2030 года. Результаты полуторагодовой работы над проектом Стратегии представил директор Департамента развития фармацевтической и медицинской промышленности Дмитрий Галкин. Документ разработан с учетом измен...

На Донбассе завершился аудит металлургического комплекса региона

В южном отделении государственного научного центра ЦНИИчермет им. И.П. Бардина прошло совещание, посвященное развитию металлургической промышленности ДНР. На встрече, организованной с участием Ивана Маркова, директора Департамента металлургии и материалов Минпромторга России, и Евгения Солнцева, председателя Правительства ДНР, а также представителей местных промышленных предприятий, обсуждались ре...

Ростех и ГЛИЦ поставили мировой рекорд по дальности полета на парашюте с системой специального назначения «Дальнолет»

Парашютная система специального назначения «Дальнолет», разработанная Госкорпорацией Ростех, успешно прошла испытания, в ходе которых был установлен новый мировой рекорд по дальности полета. В рамках тестов, проводимых специалистами Государственного летно-испытательного центра им. Чкалова Минобороны России, парашютисты совершили прыжок с высоты 10 000 метров, преодолев более 80 км — такого р...

Глава Якутии Айсен Николаев предложил внедрить дополнительные меры поддержки для повышения энергоэффективности

В правительстве России состоялась стратегическая сессия, посвященная повышению энергетической и ресурсной эффективности экономики, на которой глава Якутии Айсен Николаев предложил сохранить механизм выравнивания энерготарифов для потребителей Арктической зоны. Мероприятие, проведенное 26 ноября под председательством Михаила Мишустина, стало важным этапом обсуждения актуальных проблем энергетическо...

22 ноября исполняется 115 лет со дня рождения конструктора Михаила Миля, создателя прославленного семейства вертолетов «Ми»

Он был новатором, способным видеть далеко за пределами горизонта. Вертолеты «Ми» стали символом надежности и эффективности, покорив весь мир. От спасательных операций до военных миссий, от сельскохозяйственных работ до транспортных задач выполняют вертолеты марки «Ми» — наследие Михаила Миля сложно переоценить. Юбилей авиаконструктора — отличный повод вспомнить известные и малоизвес...

12 Октября 2011

Нейтрализация взрывоопасной смеси, образовавшейся в результате контакта воды с выплавляемым реакционным металлом.

Нейтрализация взрывоопасной смеси, образовавшейся в результате контакта воды с выплавляемым реакционным металлом.
Спocoб oбеcпечения взрывoбезoпаcнocти при экcплуатации вакуумнoй дугoвой печи для выплавки cлитков реакционных металлов
Споcоб обеcпечения взрывобезопаcноcти при экcплуатации вакуумной дуговой печи для выплавки cлитков реакционных металлов

Автор: Альтман Петр Семенович

Изобретение отноcитcя к цветной металлургии, преимущественно к способам вакуумной дуговой плавки высокореакционных металлов, в частности титана и его сплавов. В способе производят флегматизацию парогазовой смеси при аварийном образовании ее в рабочем пространстве. В качестве флегматизатора используют водяной пар, при этом в рабочем пространстве печи поддерживают давление, исключающее срабатывание возвратного клапана на период, равный времени охлаждения слитка. Изобретение позволяет нейтрализовать взрывоопасную смесь, образовавшуюся в результате контакта воды из системы охлаждения кристаллизатора с выплавляемым реакционным металлом, исключить детонацию взрывоопасной смеси. 1 ил.

Известна вакуумная дуговая печь, содержащая водоохлаждаемый кристаллизатор с предохранительным клапаном, защитную вакуумную камеру (бронекожух), электрододержатель, источник тока, систему вакуумирования (Плавка и литье титановых сплавов. /Андреев А.Л., Аношкин Н.Ф., Бочвар Г.А. и др. - М., "Металлургия", 1994, стр.150-156). Процесс ВДП заключается в переплаве расходуемых электродов на слиток электрической дугой при давлении 0,06-0,6 Па в водоохлаждаемом кристаллизаторе, состыкованном с вакуумной камерой.

Конструкция кристаллизатора испытывает большие тепловые нагрузки. Тепловые потоки через его стенку в зоне горения дуги и верхней части формирующегося слитка составляют от сотен до тысяч киловатт на квадратный метр, в аварийных ситуациях (при переброске дуги на стенку кристаллизатора) превосходят эту величину. С наружной стороны кристаллизатор охлаждается водой, находящейся под давлением не ниже 4 атм.

Общим событием, предшествующим и необходимым для создания аварийной ситуации, является повреждение стенки кристаллизатора, отделяющей внутреннее рабочее пространство от полости водяного охлаждения кристаллизатора. Повреждения происходят чаще всего в результате горения дугового разряда между расходуемым электродом и внутренней стенкой кристаллизатора. В этой ситуации предпринимаются меры пассивной защиты:
  • - отключается питание печи;
  • - уменьшается количество подаваемой охлаждающей воды;
  • - печь отключается от вакуумных насосов;
  • - срабатывают герметические возвратные клапаны.

(Плавка и литье титановых сплавов. Отв. редактор В.И.Добаткин. М., Металлургия, 1978, с.68). Однако это не исключается попадание воды в рабочий объем кристаллизатора.

Попадание воды на расплавленный металл, имеющий температуру более 1700°С, сопровождается интенсивным парообразованием. Это взаимодействие может быть импульсным (паровой взрыв) или замедленным.

Образовавшаяся парогазовая смесь заполняет рабочее пространство до момента открытия клапана, а если он не справляется, то и после. В последнем случае внутреннее давление может превысить прочность герметических соединений элементов конструкции печи, что приведет к разрушению наиболее слабого места и выходу смеси в бронекожух. Следует отметить, что энергия, выделяемая при паровом взрыве, гарантированно локализуется защитной камерой печи, имеющей многократный запас прочности.

Параллельно, с образованием пара, вода вступает в химическую реакцию с титаном с образованием свободного водорода. Не исключены также электролиз и термическая диссоциация воды с образованием водорода и кислорода.

Смешивание водорода с кислородом воздуха может произойти в результате выхода водорода в бронекожух и втекания воздуха в рабочее пространство печи через открывшиеся проемы и отверстия, причем эти процессы могут происходить одновременно.

Источник воспламенения - расплавленный металл - всегда имеется внутри печи. Кроме того, искры от удара клапана или металлических частей при их разрушении могут воспламенить водород, выходящий из печи и распространяющийся по объему бронекожуха с огромной скоростью. Последствия взрыва смеси воздуха и водорода несравнено более тяжелые и могут привести к разрушению не только собственно печи, но и защитного кожуха печи. Поэтому предотвращение взрыва является необходимым условием предотвращения аварий, приводящих к катастрофическим последствиям.

Для возникновения химического взрыва необходимы условия выхода водорода в защитный кожух с одновременным втеканием воздуха в печь, в результате чего взрывоопасная смесь образуется как внутри, так и вне рабочего объема кристаллизатора, и взрыв, начавшись внутри кристаллизатора, легко распространяется в бронекожух.

Считается, что детонация водорода в смеси с воздухом возможна при объемной концентрацией водорода от 13 до 70%. Предел воспламенения 9-74%.

Возможность детонации зависит от следующих факторов:
  • - относительной концентрации горючего и окислителя;
  • - концентрации флегматизатора (в предлагаемом изобретении - пара);
  • - начальных значений температуры и давления (плотность газа);
  • - формы и размера конструкции, в которой происходит детонация.

Из всех перечисленных факторов наиболее надежным и простым, с точки зрения осуществления, является исключения условий детонации с помощью регулирования концентрации флегматизатора.

Известен способ обеспечения взрывобезопасности при эксплуатации вакуумной дуговой печи для выплавки слитков реакционных металлов, заключающийся в подаче в защитную камеру сжиженного углекислого газа до создания в отсеке избыточного давления, при этом образуется смесь H2 и CO2, которая не подвержена взрыву (решение о выдаче патента от 30.01.2008 по заявке 2006134772 от 02.10.2006, МПК С22И 9/20 - прототип).

Недостатком указанных способов является необходимость наличия специального газового оборудования, обеспечивающие подачу углекислого газа в камеру печи.

Задачей, на решение которой направленно данное изобретение, является способ повышения взрывобезопасности плавления реакционных металлов как последняя возможность в цепи мер безопасности, когда использование известных существующих мер безопасности не предотвращает аварийную ситуацию, при которой во внутренний объем кристаллизатора попадает вода из системы охлаждения и образуется взрывоопасная смесь водорода и воздуха.

Техническим результатом, достигаемым при осуществлении изобретения, является нейтрализация взрывоопасной смеси, образовавшейся в результате контакта воды из системы охлаждения кристаллизатора с выплавляемым реакционным металлом, посредством обеспечения необходимой концентрации флегматизатора в объеме печи, исключающей детонацию взрывоопасной смеси.

Указанный технический результат при осуществлении изобретения достигается тем, что в способе обеспечения взрывобезопасности при эксплуатации вакуумной дуговой печи для выплавки слитков реакционных металлов, включающем флегматизацию парогазовой смеси при ее аварийном образовании в рабочем пространстве, в качестве флегматизатора используется водяной пар, при этом в рабочем пространстве печи поддерживается давление, исключающее срабатывание возвратного клапана на период, равный времени охлаждения слитка.

влияние содержания водяного пара на концентрационные пределы горючести и взрываемости водородовоздушной смесиНа чертеже показано влияние содержания водяного пара на концентрационные пределы горючести и взрываемости водородовоздушной смеси, а также на величину давления детонации. Из графика следует, что при содержании пара в смеси более 15% реализовать в ней детонационный режим невозможно, а при содержании пара более 55% смесь не горит.

Данный способ реализуется следующим образом.

При поступлении воды в рабочую зону печи выдаются команды на отключение источника тока, снижение расхода охлаждающей воды. Одновременно включается откачка печи водокольцевым форвакуумным насосом и система частичной конденсации пара, обеспечивающие поддержание давления в рабочем пространстве печи, исключающего срабатывание возвратного клапана на период, равный времени охлаждения слитка. Так как скорость парообразования на порядок больше скорости образования водорода, а последняя снижается по мере охлаждения слитка, в парогазовой смеси поддерживают необходимую концентрацию пара (>15%), обеспечивающую флегматизирующий эффект.

Расчеты показывают, что при поступлении в печи типа ДТВ потока воды 1÷2 кг/с (диаметр отверстия 10 мм) необходимые по давлению и содержанию пара-флегматизатора параметры парогазовой смеси обеспечиваются при суммарной производительности откачки и частичной конденсации ~6 м3/мин.

Предлагаемый способ обеспечивает безопасную эксплуатацию ВДП при выплавке реакционных металлов.

Кол-во просмотров: 15889
Яндекс.Метрика