ВАЖНЫЕ НОВОСТИ
Россия и Китай обсудили создание МТОР и инфраструктуры, привлечение инвесторов на остров Большой Уссурийский

В городе Фуюань (КНР) состоялось третье заседание Специальной рабочей группы по сопряжению развития российской и китайской частей острова Большой Уссурийский. Мероприятие прошло под сопредседательством заместителя Министра Российской Федерации по развитию Дальнего Востока и Арктики Виталия Алтабаева при участии представителей Корпорации развития Дальнего Востока и Арктики (КРДВ), правительства Ха...

В Москве состоялось заседание комиссии Госсовета РФ по направлению «Энергетика» по итогам 2025 года

В ходе первого заседания комиссии Государственного Совета РФ по направлению «Энергетика» были подведены итоги деятельности за 2025 год и утвержден план работы на 2026 год. Центральной темой обсуждения стали стратегические подходы к повышению энергетической эффективности национальной экономики. Заседание прошло в Москве под председательством руководителя комиссии, главы Республики Саха (Якутия) Айс...

Геополитическое противостояние в Тихом океане: США хотят разместить базу у «ворот» китайского порта

Геополитическое противостояние в Тихом океане: США хотят разместить базу у «ворот» китайского порта Планы США по усилению своего военного присутствия в Южной Америке получили конкретные очертания. Как сообщает Bloomberg, Вашингтон намерен построить в Перу военно-морскую базу. Ключевая деталь — объект может быть размещён всего в 80 км от стратегически важного порта, принадлежащего Китаю, ч...

Мощность энергосистемы Якутии к 2030 году увеличится в два раза

На территории Якутии одновременно реализуется ряд крупных энергетических проектов, которые в ближайшие годы позволят почти вдвое увеличить установленную мощность региональной энергосистемы. Об этом сообщил Айсен Николаев - глава РС (Я), председатель комиссии Госсовета РФ по направлению «Энергетика». По его словам, на сегодняшний день суммарная установленная мощность всех энергоустановок в респу...

Состоялось стратегическое заседание Совета директоров «Росспецмаш»: обсуждены вызовы рынка и приняты новые члены

В Москве состоялось заседание Совета директоров Ассоциации «Росспецмаш». На встрече присутствовали топ-менеджеры и владельцы ведущих предприятий отрасли, выпускающих сельскохозяйственную, строительно-дорожную, прицепную технику, пищевое оборудование и комплектующие. Ключевой темой обсуждения стала текущая ситуация на рынке специализированного машиностроения. Участники констатировали, что тенден...

Минпромторг России предлагает продлить эксперименты по добровольной маркировке ряда категорий товаров

Соответствующий проект постановления Правительства Российской Федерации разработан Минпромторгом России и размещен на федеральном портале regulation.gov.ru. Инициатива предполагает продление до 31 августа 2026 г. сроков проведения экспериментов по добровольной маркировке ряда видов продукции, которые, согласно действующим постановлениям Правительства Российской Федерации, завершаются 28 февраля...

16 Декабря 2009

Плазменный источник проникающего излучения

Плазменный источник проникающего излучения

Автoры: Бoгoлюбoв Евгений Петрoвич, Гoликoв Алекcандр Владимирoвич, Дулатoв Али Каюмoвич, Лемешкo Бoриc Дмитриевич, Рыжкoв Валентин Иванoвич, Сидoрoв Павел Павлoвич, Юркoв Дмитрий Игoревич

Плазменный иcтoчник проникающего излучения отноcитcя к плазменной технике, в чаcтноcти к уcтройcтвам для генерирования нейтронных пучков, а именно к генераторам разовых импульcов нейтронного излучения, и может быть иcпользован для проведения ядерно-физичеcких иccледований. Изобретение направлено на увеличение выхода нейтронов в импульcе плазменного иcточника проникающего излучения, а также обеcпечения cтабильной работы. Плазменный иcточник проникающего излучения cостоит из газоразрядной камеры, содержащей газоразрядные электроды и заполненной изотопами водорода, высоковольтного импульсного генератора, подключенного к газоразрядным электродам и введены устройство управления высоковольтными импульсными генераторами, дополнительный высоковольтный импульсный генератор, подключенный к аноду газоразрядной камеры и формирующий предварительный высоковольтный импульс. Дополнительный высоковольтный импульсный генератор может быть выполнен на последовательно соединенных емкостном накопителе и высоковольтном коммутаторе или в виде генератора импульсов тока наносекундной длительности на отрезках длинных линий. Дополнительный высоковольтный импульсный генератор формирует предварительный высоковольтный импульс амплитудой (100-500) А и длительностью (20-100) нс, устройство управления высоковольтными импульсными генераторами формирует на первом выходе управляющий импульс с задержкой (30-150) нс по отношению к импульсу со второго выхода. 4 з.п. ф-лы, 1 ил.
Изобретение относится к плазменной технике, в частности к устройствам для генерирования нейтронных пучков, а именно к генераторам разовых импульсов нейтронного излучения, и может быть использовано для проведения ядерно-физических исследований, изучения радиационной стойкости, например элементов электронной аппаратуры, калибровки детекторов нейтронных излучений.
Известен плазменный источник проникающего излучения, выполненный в виде плазменной разрядной камеры, заполненной изотопами водорода и содержащей газоразрядные электроды. Электроды разрядной камеры известного плазменного источника выполняются цилиндрическими или плоскими (см., например, авторское свидетельство 347006, кл. Н05Н 1/00, 1971). При определенных условиях разряда, когда осуществляется кумуляция прямого Z - пинча, из разрядной камеры может быть получен нейтронный выход до 3·1010 нейтронов в импульсе при длительности импульса около 0,2 мкс.
Известный источник характеризуется недостаточным удельным выходом излучения на единицу затраченной энергии и небольшим ресурсом работы (10-100 кумуляции Z - пинча с генерацией нейтронного и рентгеновского излучений). Кроме того, известный источник обладает значительными размерами, затрудняющими в ряде случаев его использование.
В качестве прототипа по наибольшему количеству совпадающих конструктивных признаков принят плазменный источник проникающего излучения (патент РФ на полезную модель 65709, кл. Н05Н 1/00, 2007), состоящий из газоразрядной камеры, содержащей газоразрядные электроды и заполненной изотопами водорода, и источника электрического питания.
Известный источник характеризуется недостаточной стабильностью работы (разбросом значений выходов).
Стабильность работы плазменного источника описывают параметром - среднеквадратическим отклонением (СКО), который вычисляют по формуле (1):


где Ni - выход нейтронов в импульсе,

Ncp - среднее значение выхода нейтронов в импульсе,

m - число включений генератора.

Предлагаемое изобретение направлено на увеличение выхода нейтронов в импульсе плазменного источника проникающего излучения, а также обеспечения стабильной работы плазменного источника.

Для повышения нейтронного выхода и стабильности работы плазменного источника проникающего излучения в плазменный источник проникающего излучения, состоящий из газоразрядной камеры, содержащей газоразрядные электроды и заполненной изотопами водорода, в которой формируется разряд типа плазменный фокус, и высоковольтного импульсного генератора, подключенного к газоразрядным электродам, введены устройство управления высоковольтными импульсными генераторами и дополнительный высоковольтный импульсный генератор, подключенный к аноду газоразрядной камеры и формирующий предварительный высоковольтный импульс, причем полярности тока дополнительного и основного высоковольтных импульсных генераторов совпадают, а устройство управления высоковольтными импульсными генераторами вторым выходом подключено к управляющему входу дополнительного высоковольтного импульсного генератора, причем дополнительный высоковольтный импульсный генератор может быть выполнен на последовательно соединенных емкостном накопителе и высоковольтном коммутаторе, общий вывод которых через зарядные резисторы подключен к источнику питания, или в виде генератора импульсов тока наносекундной длительности на отрезках длинных линий, выполненных в виде коаксиальных спиралей, дополнительный высоковольтный импульсный генератор формирует предварительный высоковольтный импульс амплитудой (100-500) А и длительностью (20-100) нс, причем устройство управления высоковольтными импульсными генераторами формирует на первом выходе управляющий импульс с задержкой (30-150) нс по отношению к импульсу со второго выхода.

Схема плазменного источника проникающего излучения приведена на чертеже.

Плазменный источник проникающего излучения содержит газоразрядную камеру, состоящую из двух коаксиально расположенных металлических электродов: внутренний электрод 1 является анодом, а внешний электрод 2 является катодом, генератор газа 3, между анодом 1 и катодом 2 размещен изолятор 4, в непосредственной близости от которого на катоде выполнены цилиндрические углубления (зенковка) 5, расположенные равномерно по окружности, центр которой находится на оси камеры. Разрядная камера (через коаксиальные или плоские проводники) соединена с высоковольтным импульсным генератором, выполненным, например, на емкостном накопителе 6, высоковольтном коммутаторе 7, зарядных резисторах 8. Плазменный источник содержит также задатчик 9 потенциала на аноде 1, выполненный, например, на резисторах, и дополнительный высоковольтный импульсный генератор, выполненный, например, на емкостном накопителе 10, высоковольтном коммутаторе 11 и зарядных резисторах 12, который обеспечивает подачу предварительного импульса в интервале времени от 30 до 300 нс (в нашем случае 50 нс) с амплитудой первой полуволны от 50 А до 10 кА (в нашем случае 200 А) по сигналу устройства управления высоковольтными импульсными генераторами 13. Полярности тока предварительного импульса и основного токового импульса совпадают.

Цилиндрические углубления 5, выполненные в корпусе разрядной камеры, необходимы для равномерного распределения тока в разрядной камере.

Объем разрядной камеры может быть заполнен изотопами водорода (дейтерием, смесью дейтерия и трития или тритием)

Работает плазменный источник следующим образом.

Выбирают режим работы плазменного источника следующий: по команде устройства управления 13 срабатывает высоковольтный коммутатор 11 дополнительного генератора, при этом вся запасенная энергия на емкостном накопителе 10 поступает на электроды 1, 2 газоразрядной камеры, что приводит к предварительной ионизации газа около изолятора, через (30-150) нс срабатывает высоковольтный коммутатор 7 основного разрядного контура и вся запасенная энергия из емкостного накопителя 6 поступает на электроды 1, 2 разрядной камеры. В результате в ионизированном предварительным импульсом газе вблизи изолятора развивается разряд с образованием более однородной цилиндрической токовой плазменной оболочки. Под действием электродинамических сил плазменная оболочка отходит от изолятора 4 и движется с ускорением по межэлектродному зазору к области фокусировки 16 (плазменный фокус), которая находится на оси разрядной камеры вблизи поверхности анода 1. Формирующийся плазменный фокус 16 является источником нейтронов (и рентгеновских лучей).

Приложение предварительного импульса к электродам разрядной камеры приводит к увеличению выхода нейтронов в импульсе в два и более раза, уменьшению среднеквадратического отклонения с 30-50 до 10-15%.


Кол-во просмотров: 16499
Яндекс.Метрика