ВАЖНЫЕ НОВОСТИ
Изменения в сфере связи: новые правила и усиление защиты от мошенников

Правительство России утвердило изменения в регулировании связи, которые упростят лицензирование и помогут бороться с телефонным мошенничеством. Разберём главные моменты. IP-телефония продолжает работать Услуги связи с использованием IP-телефонии не запрещаются и будут продолжать оказываться. Для этого необходима лицензия на оказание услуг телефонной связи. Для большинства добросовестных опер...

Рынок новых автомобилей в России в 2024 году превысил 1,8 млн штук

По итогам января-декабря 2024 года на территории Российской Федерации реализовано 1 836 029 новых автомобилей (до 3-х лет), что на 39% больше показателей прошлого года (1 319 862 шт.)*. При этом рынок новых автомобилей отечественного производства превысил 829 тыс. шт., что на 28% больше показателей января-декабря 2023 года. Объём рынка в сегменте легковых автомобилей составил 1 553 608 шт. (+47...

Принято решение о введении долгосрочной шкалы индексации утилизационного сбора на сельскохозяйственную технику

Постановление Правительства Российской Федерации вступит в силу с 1 января 2025 года. При формировании изменений в коэффициенты утильсбора на сельскохозяйственную технику Минпромторг России внимательно проанализировал предложения профильных комитетов Государственной Думы и Совета Федерации, отраслевого сообщества и экспертов. Была сформирована сбалансированная позиция, которая позволит и удовлетво...

В России в 2025 году планируется разработка стандартов цифровизации и автоматизации сферы ЖКХ

Технический комитет по стандартизации планирует в следующем году разработать стандарт ГОСТ Р по автоматизации и цифровизации жилищно-коммунальной сферы в России. Внедрение стандарта позволит повысить эффективность, надёжность и прозрачность отрасли ЖКХ и будет способствовать цифровой трансформации процессов государственного регулирования. ГОСТ Р «Автоматизация, информатизация и цифровизация ЖКХ...

Эксперты обсудили вопросы развития электронного машиностроения в России

Эксперты радиоэлектронной отрасли обсудили вопросы развития электронного машиностроения в рамках заседания Экспертного совета по развитию электронной и радиоэлектронной промышленности при Комитете Госдумы по промышленности и торговле под председательством генерального директора Объединенной приборостроительной корпорации (управляющей компании холдинга «Росэлектроника» Госкорпорации Ростех) Сергея ...

Минпромторг России представил проект Стратегии развития реабилитационной индустрии Российской Федерации на период до 2030 года

В рамках Российской недели здравоохранения состоялась презентация подготовленного Минпромторгом России проекта Стратегии развития реабилитационной индустрии Российской Федерации на период до 2030 года. Результаты полуторагодовой работы над проектом Стратегии представил директор Департамента развития фармацевтической и медицинской промышленности Дмитрий Галкин. Документ разработан с учетом измен...

23 Марта 2011

Увеличение КПД парогазовой установки и снижение выбросов в атмосферу вредных веществ.

Увеличение КПД парогазовой установки и снижение выбросов в атмосферу вредных веществ.
Парoгазoвая уcтанoвка
Парoгазoвая уcтанoвка

Автoры: Кocтoгрыз Валентин Григoрьевич, Нoвикoв Виктoр Михайлoвич, Хoлмянcкий Игoрь Антoнoвич

Изoбретение oтноcитcя к теплоэнергетике. Парогазовая уcтановка cодержит газотурбинный двигатель, включающий компреccор, камеру cгорания c форcункой, закрепленной на роторе турбокомпреccора, газовую турбину c выхлопным cоплом, кольцевой генератор пара c коллектором подачи воды, размещенный в зоне выхлопного cопла, при этом кольцевой генератор пара имеет теплоизолированную гофрированную поверхноcть и входной канал, соединяющий кольцевой генератор пара с закомпрессорным пространством двигателя и выходной канал, соединяющий кольцевой генератор пара с вращающейся форсункой, состоящей из неподвижного диска и вращающегося диска с винтовыми гребнями, образующими каналы подачи топливовоздушной смеси в зону горения, на неподвижном диске форсунки размещены дополнительные каналы подачи топлива и пара к гребням вращающегося диска форсунки, в кольцевом генераторе пара установлены наклонные ребра, выступающие в канал течения выхлопных газов, профиль гребней вращающейся форсунки выполнен по кривым эллипса с галтелью у основания. Изобретение позволяет увеличить КПД установки и снизить выбросы в атмосферу вредных веществ. 4 ил.

Известна энергетическая установка для привода электрогенераторов типа «Водолей» (см. Цанев С. В., Буров В.Д., Ремезов А.Н. Газотурбинные и парогазовые установки тепловых электростанций. М.: Издательство МЭИ, 2002. стр.564-565 [1]) на основе газотурбинного двигателя, которая с целью утилизации тепла выхлопных газов, повышения КПД и уменьшения вредных выбросов, содержит устройство подачи водяного пара в камеру сгорания двигателя, утилизатор тепла выхлопных газов, установленный за выхлопным соплом, контактный конденсатор-пароохладитель и другие устройства системы подачи и регенерации воды.

Известен способ регенерации тепла в газотурбинном двигателе с подачей водяного пара в камеру сгорания (см. Патент РФ 2042847, кл. F02C 3/30, 1995 г., «Способ регенерации топлива и экологической очистки выхлопных газов в газотурбинном авиационном двигателе со свободной турбиной» [2]), в котором с целью повышения КПД и экологичности ГТУ дополнительно содержит теплообменник-конденсатор, регенератор, с обеспечением регулирования расходов рабочего тела, топлива и водяного пара.

Известна парогазовая установка, содержащая емкость с водой, газотурбинный двигатель с вращающейся топливной форсункой, парогенератор, размещенный в зоне выхлопного сопла, каналы подачи воды и пара в полость вращающейся форсунки (патент РФ 2296872, МПК F02C 3/30, 2006 г. [3]).

Недостатком известных парогазовых установок является то, что в них не обеспечивается мелкодисперсное распыление капель воды и равномерное перемешивание их с топливом перед поступлением всех компонентов в ядро горения камеры сгорания.

Предлагается парогазовая установка, которая содержит емкость с водой, генератор пара и газотурбинный двигатель, включающий компрессор, кольцевую камеру сгорания с топливной форсункой, вращающейся с ротором двигателя, газовую турбину с выхлопным соплом и кольцевой генератором пара в виде кольцевого коллектора, размещенного на выхлопном сопле, причем кольцевой генератор пара выполнен в виде гофрированной улитки, охватывающей выхлопное сопло, и соединен одним каналом с закомпрессорной областью повышенного давления, а другим - с вращающейся топливной форсункой, при этом форсунка имеет винтовые гребни для подачи пара вместе с топливом в ядро горения камеры сгорания. Кольцевой генератор пара имеет с соплом общую стенку, которая является испарительной и обеспечивает образование пара из воды, впрыскиваемой в кольцевой генератор пара из коллектора, за счет температуры выходящих горячих газов сопла. Кроме того, происходит охлаждение выходящих газов.

Такое выполнение кольцевого генератора пара повышает экономичность парогазовой установки путем утилизации тепла выходящих газов и, вследствие этого, повышает теплоперепад в турбине, что, в свою очередь, повышает ее КПД.

Для усиления эффекта перегрева пара сопрягаемые поверхности кольцевого генератора пара и сопла гофрированы и оребрены, причем ребра выступают как в полость сопла, так и в полость кольцевого генератора пара.

Для подачи пара в ядро горения камеры сгорания используется вращающаяся форсунка цилиндрической или конической формы. Форсунка выполнена в виде сопрягающихся двух дисков, один из которых закреплен на роторе двигателя, другой - неподвижный. На наружной поверхности вращающегося диска расположены винтовые гребни, загнутые в сторону вращения и подающие пар, топливо и воду в ядро горения камеры сгорания. На неподвижном диске форсунки размещены дополнительные каналы для подачи воды и пара в зону смешения форсунки. Профиль гребней вращающейся форсунки выполнен по кривой эллипса с галтелью у основания.

Такое выполнение парогазовой установки позволяет, в зависимости от режима работы, подавать разное количество топлива, воды и пара в ядро горения камеры сгорания, что дает возможность резко повысить экономичность установки, так как подача перегретого пара (до температуры 300-400°С) из кольцевого генератора пара в зону горения приводит к его диссоциации и участию в химических реакциях горения. Кроме того, происходит улучшение перемешивания топливовоздушной смеси в зоне камеры сгорания, измельчение и распыливание капель воды и топлива до мелкодисперсного состояния, что повышает полноту сгорания топливовоздушной смеси и соответственно повышает КПД установки.

Парогазовая установка
На фиг.1 изображена общая схема парогазовой установки. На фиг.2 приведена схема вращающейся форсунки для подачи водяного пара, воды и топлива (жидкого или газообразного) в зону горения камеры сгорания. На фиг.3 показано устройство винтовых гребней вращающейся форсунки. На фиг.4 приведен вид на оребрение кольцевого генератора пара.
Парогазовая установка Парогазовая установка Парогазовая установка
Парогазовая установка содержит газотурбинный двигатель 1, включающий компрессор 2, кольцевую камеру сгорания 3 с вращающейся форсункой 4, закрепленной на роторе 5 двигателя, турбину 6, соединенную общим ротором с компрессором 2, и силовую (свободную) турбину 7, приводящую электрогенератор 8. Компрессор 2 и турбина 6, соединенные одним общим ротором, образуют турбокомпрессор. Установка содержит емкость с водой (не показана), из которой вода подается в кольцевой коллектор 19. Наружную поверхность выхлопного сопла 10 двигателя по окружности охватывает кольцевая оболочка 17. Поверхность кольцевой оболочки 17 выполнена гофрированной, внутри оболочки 17 расположен кольцевой коллектор 19 подачи воды в виде кольцевой трубки с дождевальными насадками (не показаны), обеспечивающими равномерное впрыскивание воды в полость кольцевой оболочки. Гофрированная оболочка 17 с кольцевым коллектором 19 образуют кольцевой генератор пара 9. В полости кольцевого генератора 9 размещены испарительные ребра 18, которые одной частью находятся в полости генератора пара 9, а второй выступают в полость проточной части выхлопного сопла 10, где домываются и нагреваются выхлопными газами двигателя. Ребра 18 по обе стороны кольцевого генератора пара 9 имеют противоположные углы наклона (фиг.4), что приводит к движению нагретого пара от канала 11 к каналу 13 по задней стенке кольцевого генератора пара 9. Гофрированная поверхность кольцевого генератора пара 9 имеет слой теплоизоляции, предотвращающий теплоотдачу в окружающее пространство. Кольцевой генератор пара 9 соединен входным каналом 11 с закомпрессорным пространством через улитку 12 и выходным каналом 13 соединен с вращающейся топливоподающей форсункой 4. Топливная форсунка 4 имеет неподвижный диск 14 и вращающийся диск 22. На подвижном диске 22 форсунки выполнены винтовые гребни 20, образующие винтовые каналы 21 подачи топливоводно-воздушной смеси в зону горения. На неподвижном диске 14, закрепленном на задней стенке компрессора 2, расположены патрубки 15 и 16 подачи в форсунку 4 топливоводно-воздушной смеси.

Входной канал 11, по которому в генератор пара 9 поступает сжатый в компрессоре 2 воздух, представляет собой теплоизолированную расширяющуюся полость, обеспечивающую плавное снижение скорости потока воздуха. Выходной канал 13, по которому из генератора пара 9 смесь сжатого воздуха и распыленной воды поступает в камеру сгорания 3, также выполнен в виде теплоизолированного канала.

На фиг.3 показан вид на внешнюю поверхность вращающегося диска форсунки 4. На его поверхности, обращенной к неподвижному диску, выполнены многозаходные винтовые каналы 21, образованные гребнями 20, направляющие поток топливовоздушной смеси, пара и воды к периферии диска и выбрасывающие топливоводно-воздушную смесь в зону горения. Профиль винтовых гребней 20 выполнен по кривым второго порядка (типа дуг эллипса, гиперболы) с галтелью у основания гребня.

В процессе работы парогазовой установки из компрессора 2 двигателя в закомпрессорное пространство «В» поступает сжатый в компрессоре воздух (до давления 57 атмосфер) с температурой 300-400°С, откуда подается в камеру сгорания 3 и улитку 12. Из улитки 12 по каналу 11 сжатый воздух поступает в кольцевой генератор пара 9, где движется в кольцевом направлении, нагреваясь от ребер 18, которые нагреты теплом выхлопных газов. Гофрированные поверхности улитки 17 кольцевого генератора пара 9 предназначены для повышения эффективности перегрева пара за счет увеличения площади теплоотдачи и направления потока паров, омывающих с двух сторон корпус сопла, в канал 13. Гофрированная поверхность кольцевого генератора пара имеет слой теплоизоляции, предотвращающий теплоотдачу в окружающее пространство. В полость [кольцевого генератора пара 9 через коллектор 19 впрыскивается вода, которая испаряется и сжатый воздух, насыщенный парами воды, поступает в канал 13, по которому попадает между гребнями 20 в каналы 21 вращающейся форсунки 4. Одновременно по патрубкам 15, 16 подается в форсунку требуемое количество топлива и воды или пара, которые, проходя по каналам между гребнями 20 в каналах 21 вращающейся форсунки 4, перемешиваются и измельчаются до мелкодисперсного состояния, после чего вбрасываются с большой скоростью в ядро горения.

Такое исполнение парогазовой установки позволяет резко повысить КПД на различных режимах работы, варьируя соотношение подачи пара и воды в зависимости от расхода топлива и частоты вращения ротора. Выполнение кольцевого генератора пара с гофрами, размещение в полости кольцевого генератора пара ребер, выступающих в полость сопла выхлопных газов, обеспечивают производство пара с попутной утилизацией тепла выхлопных газов, то есть повышают КПД установки. Подача пара в ядро горения камеры сгорания позволяет резко увеличить массу рабочего тела, повышает мощность и КПД парогазовой установки.

Подача в ядро горения воды в виде распыленных капель позволяет резко повысить температуру в ядре горения за счет мелкодисперсного распыления топлива и воды, что приводит к термической диссоциации воды с разложением на кислород и водород, повышению полноты и температуры сгорания. Такое выполнение ГТУ увеличивает КПД установки на 1020% и снижает выбросы в атмосферу вредных веществ.

Список литературы

1. Цанев С.В., Буров В.Д., Ремезов А.Н. Газотурбинные и парогазовые установки тепловых электростанций. М.: Издательство МЭИ, 2002.

2. Патент РФ 2042847, кл. F02C 3/30, 1995 г. Способ регенерации топлива и экологической очистки выхлопных газов в газотурбинном авиационном двигателе со свободной турбиной.

3. Патент РФ 2296872, кл. F02C 3/30, 2006 г. Парогазовая установка.

Кол-во просмотров: 16477
Яндекс.Метрика