ВАЖНЫЕ НОВОСТИ
Минтранс РФ и ЕЭК обсудили цифровизацию железнодорожных контейнерных перевозок в ЕАЭС

В Москве прошла рабочая встреча главы Минтранса России Андрея Никитина и министра по энергетике и инфраструктуре Евразийской экономической комиссии (ЕЭК) Арзыбека Кожошева. Стороны обсудили ключевые направления сотрудничества в рамках Совета руководителей уполномоченных органов в области транспорта государств-членов ЕАЭС. Основной темой переговоров стала подготовка «дорожной карты» по реализаци...

ОДК внесла в Совет Федерации предложения для укрепления энергетической стратегии России

Объединенная двигателестроительная корпорация Госкорпорации Ростех внесла на рассмотрение Комитета Совета Федерации предложения по укреплению энергетической стратегии России. Компания ОДК Инжиниринг предложила расширить меры государственной поддержки отечественного энергомашиностроения и сформировать предсказуемый спрос на критичное энергетическое оборудование. Предложения были озвучены в рамка...

Россия и Китай обсудили создание МТОР и инфраструктуры, привлечение инвесторов на остров Большой Уссурийский

В городе Фуюань (КНР) состоялось третье заседание Специальной рабочей группы по сопряжению развития российской и китайской частей острова Большой Уссурийский. Мероприятие прошло под сопредседательством заместителя Министра Российской Федерации по развитию Дальнего Востока и Арктики Виталия Алтабаева при участии представителей Корпорации развития Дальнего Востока и Арктики (КРДВ), правительства Ха...

В Москве состоялось заседание комиссии Госсовета РФ по направлению «Энергетика» по итогам 2025 года

В ходе первого заседания комиссии Государственного Совета РФ по направлению «Энергетика» были подведены итоги деятельности за 2025 год и утвержден план работы на 2026 год. Центральной темой обсуждения стали стратегические подходы к повышению энергетической эффективности национальной экономики. Заседание прошло в Москве под председательством руководителя комиссии, главы Республики Саха (Якутия) Айс...

Геополитическое противостояние в Тихом океане: США хотят разместить базу у «ворот» китайского порта

Геополитическое противостояние в Тихом океане: США хотят разместить базу у «ворот» китайского порта Планы США по усилению своего военного присутствия в Южной Америке получили конкретные очертания. Как сообщает Bloomberg, Вашингтон намерен построить в Перу военно-морскую базу. Ключевая деталь — объект может быть размещён всего в 80 км от стратегически важного порта, принадлежащего Китаю, ч...

Мощность энергосистемы Якутии к 2030 году увеличится в два раза

На территории Якутии одновременно реализуется ряд крупных энергетических проектов, которые в ближайшие годы позволят почти вдвое увеличить установленную мощность региональной энергосистемы. Об этом сообщил Айсен Николаев - глава РС (Я), председатель комиссии Госсовета РФ по направлению «Энергетика». По его словам, на сегодняшний день суммарная установленная мощность всех энергоустановок в респу...

22 Апреля 2020

Международный коллектив исследователей получили графеновые островки (квантовые точки) сверхмалого размера

Международный коллектив исследователей получили графеновые островки (квантовые точки) сверхмалого размера

Ученые Института физики полупроводников им. А. В. Ржанова СО РАН, Института биохимической физики им. Н. М. Эмануэля РАН, Объединенного института ядерных исследований вместе с коллегами из других научных организаций России, Польши и Франции сформировали графеновые островки (квантовые точки) сверхмалого размера ― единицы нанометров, ― заключенные в непроводящую матрицу. Исследователи добились этого с помощью «бомбардировки» тонких пленок фторированного графена ионами ксенона. Такое наноструктурирование фторграфена было сделано впервые. Полученные структуры могут стать активными элементами наноэлектронных приборов, функционирующих при комнатной температуре.

Квантовая точка ― ее иногда называют искусственным атомом ― частица полупроводника, в которой электроны находятся в потенциальной яме, то есть «заперты» и не могут свободно двигаться по всему кристаллу. Применение квантовых точек варьируется от использования в качестве флуоресцирующих меток в медицинских и биологических работах до создания одноэлектронных транзисторов и логических элементов квантового компьютера. Наноэлектронные (квантовые) устройства чувствительны к влиянию внешних условий и для корректной работы часто требуют охлаждения до температур близких к абсолютному нулю. Однако характеристики графена позволяют создавать наноэлектронные приборы, действующие в привычных нам условиях.

«Обычно, чтобы получить в графене квантовые точки, его “нарезают” на маленькие фрагменты, но, тогда края последних взаимодействуют с воздухом, окисляются. Это приводит к нестабильности свойств материалов на основе таких квантовых точек: в частности, к уменьшению электропроводности или подвижности носителей заряда. Возникает противоречие: нужны миниатюрные квантовые точки, но у них будет много краевых состояний, которые изменят (ухудшат) их параметры. В нашей работе мы формировали графеновые квантовые точки внутри матрицы фторографена (FG, диэлектрика на основе графена). Для этого мы облучали пленки фторографена быстрыми ионами ксенона. Создаваемые в результате облучения наноостровки графена оказываются встроенными во фторированную матрицу, у них нет оборванных связей и нет проблем с появлением краевых состояний», ― объясняет научный сотрудник Института физики полупроводников им. А. В. Ржанова СО РАН кандидат физико-математических наук Надежда Александровна Небогатикова.

Облучение высокоэнергетичными ионами ксенона с энергиями от 26 до 167 МэВ происходило в лаборатории ядерных реакций им. Г.Н. Флерова ОИЯИ. Благодаря кратковременному и мощному выделению тепла во время пролета иона, материал фторграфеновой матрицы локально расширялся и восстанавливался до графена вблизи треков (траекторий) ионов. Исследовательская группа предложила модель того, как происходил этот процесс.

«По-видимому, облучение разрушает отдельные частицы фторированного графена, из которого состоят пленки, приводя к формированию небольших (20-40 нанометров в диаметре) гранул с квантовыми точками. Интересно, что затем гранулы “слипаются” в более крупные сферические образования. Мы не ожидали увидеть подобный процесс, но пронаблюдали его в эксперименте и подтвердили при помощи моделирования», ― комментирует Надежда Небогатикова.

Одно из направлений развития подхода, предложенного в работе, – разработка материалов с заранее заданными электрическими параметрами за счет управления расстояниями между квантовыми точками и формирование из них определенного рисунка. По сути подобные материалы ― основа для создания гибких электронных устройств или карт памяти.

«Наноструктурирование пленок фторированного графена значительно расширяет возможные приложения последнего. Например, мы создали двуслойные структуры, состоящие из фторграфена, нанесенного на гибкую подложку из поливинилового спирта. Степень фторирования графена до облучения была такой, что он практически не проводил электрический ток. Однако после облучения и наноструктурирования за счет формирования электрически активных квантовых точек, мы увидели улучшение параметров резистивных переключений для наших структур на несколько порядков», ― отмечает ведущий научный сотрудник ИФП СО РАН доктор физико-математических наук Ирина Вениаминовна Антонова.

Эффект резистивных переключений используется при разработке энергонезависимой памяти на основе мемристоров. Ее характеристики: время хранения, скорость и плотность записи информации существенно превышают аналогичные параметры у традиционно используемых видов памяти.

Исследование выполнялось при поддержке Российского научного фонда (проект № 19-72-10046), Фонда президентских грантов (проект № SP-5416.2018.2)

Пресс-служба ИФП СО РАН

Иллюстрации:

1.Облученный образец фторграфена на кремниевой подложке.

2.Образец фторграфена перед измерением электрофизических характеристик: проводимости, емкости

3.Подготовка к началу измерений электрофизических характеристик образца

4.Научный сотрудник Института физики полупроводников им. А. В. Ржанова СО РАН кандидат физико-математических наук Надежда Небогатикова

5.Ведущий научный сотрудник ИФП СО РАН доктор физико-математических наук Ирина Антонова

6.Надежда Небогатикова демонстрирует образцы

Автор фото: 1-4, 6 ― Надежда Дмитриева, 5 ― Евгения Цаценко

Кол-во просмотров: 10947
Яндекс.Метрика