Алекcей ЧЕСТНЕЙШИН
Сегoдня важнейшей задачей, cтoящей перед энергетикoй, являетcя мoдернизация электрocтанций и электрocетей c целью увеличения прoизвoдcтва электрoэнергии и прoпуcкнoй cпocoбнocти энергocиcтем, их oптимизация, пoвышение надежнocти и управляемocти. Сoздаваемое новое оборудование должно cоответcтвовать важнейшим требованиям XXI в., таким как эффективноcть, энергоcбережение и экологичеcкая чистота.
Открытие явления высокотемпературной сверхпроводимости (ВТСП) и достигнутые в настоящее время критические параметры сверхпроводников в сильноточных устройствах создало принципиально новые возможности для практического использования этого явления. О перспективах этого направления нам начальник сектора НИЦ НТ МАИ, главный конструктор проекта Валерий ФИРСОВ.
– Вначале немного истории. Сверхпроводимость материалов была открыта опытным путем в 1911 году. Голландский физик Хейке Камерлинг-Оннес обнаружил, что электрическое сопротивление ртути при понижении температуры до 4,15 К исчезло скачком.
С той поры ученые стали изучать это явления, при этом старались найти устойчивые сверхпроводники при более высоких температурах. Были созданы устройства, функционирующие при гелиевых температурах.
Революционное открытие было сделано в 1986 году физиками, работавшими в швейцарском подразделении фирмы IBM. При исследовании керамики, содержащей редкоземельные элементы, они обнаружили появление сверхпроводимости при температуре 30 К. Дальнейшие интенсивные исследования мирового научного сообщества позволили создавать новые материалы, обеспечивающие устойчивую сверхпроводимость при температурах жидкого азота 65–110 К. Азотный уровень температуры, в отличие от гелиевого, требует использования более простого криогенного оборудования, а значит, более дешевого, что создает возможность широкого применения высокотемпературных сверхпроводников в технике. Проблемой здесь является создание технологий производства протяженных – до 1 км и более – проводников. Наибольшие успехи в этой части принадлежат зарубежным компаниям. С 2000 года началась установка ВТСП кабелей в коммерческих сетях.
В декабре 2009 года прошла испытания первая в России высокотемпературная сверхпроводящая (ВТСП) кабельная линия длиной 200 м на напряжение 20 кВ. Работа выполнялась под руководством директора ОАО «Энергетический институт им. Кржижановского» (ЭНИН) академика Э.П. ВОЛКОВА с участием ОАО «Всероссийский научно-исследовательского институт кабельной промышленности» (ВНИИ КП), Московского авиационного института (МАИ) и ОАО «НТЦ электроэнергетика». Работы финансировались Федеральным агентством по науке и инновациям и ОАО «ФСК ЕЭС».
Испытания ВТСП кабельной линии проводились на специально созданном в ОАО «НТЦ электроэнергетики» полигоне. В условиях, максимально приближенных к реальной эксплуатации, было получено подтверждение соответствия характеристик ВТСП кабельной линии всем требованиям, заложенным при ее разработке. Сверхпроводящий кабель работал под нагрузкой 50 МВА (ток 1 500 А), при этом температура кабеля полностью соответствовала расчетным параметрам. Изоляция кабеля выдержала высоковольтные испытания. Критический ток кабеля, при котором сверхпроводник теряет свои сверхпроводящие свойства, составил более 4 тыс. А. Прошедшая испытания ВТСП кабельная линия будет установлена на подстанции 110 кВ Динамо в Москве для опытной эксплуатации в 2011-2012 годах. |
– Насколько в этой части отстала Россия, и когда у нас вплотную занялись данными разработками?
– В России в 2007 году четыре института (ЭНИН, МАИ, ВНИИ КП и НТЦ электроэнергетика) начали работы по созданию первого в России сверхпроводящего кабеля. Создание сверхпроводникового кабеля – это проект федерального значения. Замечу, что в США и Японии уже на протяжении последних 15 лет создавались отрезки данных кабелей и шли работы над созданием соответствующей инфраструктур. Запустив в декабре первый кабель, мы, по сути, ликвидировали отставание от ведущих стран, вышли в этой сфере на третье место в мире и первое – в Европе. В настоящее время Президентом России утверждена программа по развитию сверхпроводимости – это одна из главных программ по развитию новой техники в стране.
– Какую работу взял на себя Московский авиационный институт, и какие проблемы пришлось решать?
– Задачи создания кабельной линии были разделены между разработчиками. ВНИИ КП, например, взял на себя создание технологии производства кабеля. Мы, т.е. МАИ, были ответственны за создание системы криообеспечения. Это было поручено нам, т.к. мы специализируемся на криогенных ракетно-космических технологиях и обладаем в этой части большим опытом.
Для того, чтобы кабель функционировал, нужно создать систему криобеспечения, которая поддерживала бы в нем практическую сверхпроводимость, т.е. создавала бы низкую температуру – это одна из главных проблем. При этом нужно учитывать, что кабели могут быть длинные – до 2,5 км. Рабочей температурой современных сверхпроводящих кабелей является диапазон от 65 до75 К, т.е. примерно от –211 до –198°С.
В настоящее время в мире наиболее распространенные системы криообеспечения для ВТСП кабелей производятся фирмой Stirling Cryogenics (Нидерланды). Это – поршневая машина, и к ее недостаткам следует отнести относительно небольшой межремонтный ресурс.
К тому времени, когда мы стали разрабатывать свою систему криообеспечения, в России и мире для получения низких температур широко использовались турбодетандеры и турбокомпрессоры. Они более выгодны тем, что это лопаточные машины, они имеют большие обороты и маленькие габариты и вес. Но самое главное, для них сейчас созданы газостатические и газодинамические опоры, т.е. подшипники, которые, по сути, подвешивают вал в газовой среде. Это многократно увеличивает ресурс – до 10–15 лет. И мы пошли именно по этому пути.