ВАЖНЫЕ НОВОСТИ
Минтранс РФ и ЕЭК обсудили цифровизацию железнодорожных контейнерных перевозок в ЕАЭС

В Москве прошла рабочая встреча главы Минтранса России Андрея Никитина и министра по энергетике и инфраструктуре Евразийской экономической комиссии (ЕЭК) Арзыбека Кожошева. Стороны обсудили ключевые направления сотрудничества в рамках Совета руководителей уполномоченных органов в области транспорта государств-членов ЕАЭС. Основной темой переговоров стала подготовка «дорожной карты» по реализаци...

ОДК внесла в Совет Федерации предложения для укрепления энергетической стратегии России

Объединенная двигателестроительная корпорация Госкорпорации Ростех внесла на рассмотрение Комитета Совета Федерации предложения по укреплению энергетической стратегии России. Компания ОДК Инжиниринг предложила расширить меры государственной поддержки отечественного энергомашиностроения и сформировать предсказуемый спрос на критичное энергетическое оборудование. Предложения были озвучены в рамка...

Россия и Китай обсудили создание МТОР и инфраструктуры, привлечение инвесторов на остров Большой Уссурийский

В городе Фуюань (КНР) состоялось третье заседание Специальной рабочей группы по сопряжению развития российской и китайской частей острова Большой Уссурийский. Мероприятие прошло под сопредседательством заместителя Министра Российской Федерации по развитию Дальнего Востока и Арктики Виталия Алтабаева при участии представителей Корпорации развития Дальнего Востока и Арктики (КРДВ), правительства Ха...

В Москве состоялось заседание комиссии Госсовета РФ по направлению «Энергетика» по итогам 2025 года

В ходе первого заседания комиссии Государственного Совета РФ по направлению «Энергетика» были подведены итоги деятельности за 2025 год и утвержден план работы на 2026 год. Центральной темой обсуждения стали стратегические подходы к повышению энергетической эффективности национальной экономики. Заседание прошло в Москве под председательством руководителя комиссии, главы Республики Саха (Якутия) Айс...

Геополитическое противостояние в Тихом океане: США хотят разместить базу у «ворот» китайского порта

Геополитическое противостояние в Тихом океане: США хотят разместить базу у «ворот» китайского порта Планы США по усилению своего военного присутствия в Южной Америке получили конкретные очертания. Как сообщает Bloomberg, Вашингтон намерен построить в Перу военно-морскую базу. Ключевая деталь — объект может быть размещён всего в 80 км от стратегически важного порта, принадлежащего Китаю, ч...

Мощность энергосистемы Якутии к 2030 году увеличится в два раза

На территории Якутии одновременно реализуется ряд крупных энергетических проектов, которые в ближайшие годы позволят почти вдвое увеличить установленную мощность региональной энергосистемы. Об этом сообщил Айсен Николаев - глава РС (Я), председатель комиссии Госсовета РФ по направлению «Энергетика». По его словам, на сегодняшний день суммарная установленная мощность всех энергоустановок в респу...

14 Мая 2009

Твердооксидные топливные элементы – перспективный источник энергии

Твердооксидные топливные элементы – перспективный источник энергии

Недавнo иcпанcкие ученые разрабoтали низкoтемпературный электрoлит. Этo пoзвoляет раcширить вoзмoжнocти их практичеcкoгo применения. Иcпoльзoвание пoдoбных элементoв в качеcтве иcтoчникoв электрoэнергии позволяет cоздавать эффективные электромобили и небольшие электроcтанции широкого cпектра дейcтвия.

Оcновное преимущеcтво твердоокcидных элементов в том, что они не нуждаютcя в дорогом катализаторе (платине) и могут работать на многих видах топлива. Долгое время проблемой в иcпользовании твердоокcидных элементов были выcокая температура протекания процеcса (700-1000ºC) и необходимость утилизировать тепло.
Длительные поиски путей снижения температуры реакции привели к положительному результату. Удалось снизить температуру до 500ºC. Учеными разработан новый низкотемпературный электролит для твердооксидных топливных элементов. Они снизили температуру, при которой начинается электрохимическая реакция, до 25ºC. Применение такого электролита в топливных элементах существенно упрощает их использование. Понижения температуры реакции удалось добиться модификацией традиционно используемого в качестве электролита оксида циркония, стабилизированного оксидом иттрия. Кроме того, была усовершенствована конструкция электродов. Твердооксидные топливные элементы до сих пор рассматривались как перспективное решение для больших электростанций. Было доказано, что использование тепла электрохимической реакции для дополнительной выработки электроэнергии при помощи газовой или паровой турбины может довести КПД теплоэлектростанций до 80%. В качестве топлива для этого типа элементов могут применяться любое жидкое или газообразное органическое топливо либо водород.

Высокая температура реакции, являющаяся преимуществом применения твердооксидных топливных элементов в большой энергетике, усложняет и делает слишком дорогим их широкое распространение в других областях. Специалисты полагают, что с новой разработки начнется долгожданный прорыв топливных элементов на рынок источников электроэнергии. В твердооксидных топливных элементах ионы кислорода проходят через твердый оксид, который используется в качестве электролита, и при высокой температуре реагируют с водородом на аноде. Источником водорода может быть органическое жидкое или газообразное топливо. В том случае, если в качестве топлива применяется чистый водород, результатом реакции является только вода. Электролит не позволяет образовавшимся на аноде электронам двигаться обратно в сторону катода. Если замкнуть катод и анод на внешнюю нагрузку, движение электронов от анода к катоду начнется именно через нее. Будет создан электрический ток.

Обычный электролит обладает ионной проводимостью только при высоких температурах. В результате проведенных опытов было доказано, что ионная проводимость при низких температурах может быть существенно улучшена, если на слой обычного электролита будет нанесен слой титаната стронция (SrTiO3) толщиной 10 нм. Благодаря отличию строения кристаллических решеток оксида циркония и титаната стронция в области контакта этих материалов образуется большое число «кислородных вакансий» (дырок) – мест, которые могут быть заняты атомами кислорода. Эти «кислородные вакансии» образуют пути, по которым ионы кислороды движутся сквозь электролит. Благодаря использованию двух материалов вместе значение фактора проводимости (мера проводимости электролита) при температуре 25ºC достигает 100 млн. Конечно, необходим еще ряд комплексных испытаний, позволяющий проанализировать улучшение ионной проводимости через разработанный электролит. Это сделать сложно, т.к. речь идет об измерениях свойств сверхтонких материалов. Кроме того, для использования нового электролита потребуется изменить конструкцию твердооксидных топливных элементов. Улучшенная электропроводность электролита наблюдается вдоль поверхности соприкосновения материалов, а не перпендикулярно. Ограничение на применения низкотемпературного электролита накладывает материал, из которого сделаны электроды. Для того, чтобы они могли выполнять свою функцию при низкой температуре, их также необходимо совершенствовать.

И только после подтверждения вышеназванных свойств технологии топливных элементов получат мощный импульс для развития.

Кол-во просмотров: 17928
Яндекс.Метрика