ВАЖНЫЕ НОВОСТИ
Минтранс РФ и ЕЭК обсудили цифровизацию железнодорожных контейнерных перевозок в ЕАЭС

В Москве прошла рабочая встреча главы Минтранса России Андрея Никитина и министра по энергетике и инфраструктуре Евразийской экономической комиссии (ЕЭК) Арзыбека Кожошева. Стороны обсудили ключевые направления сотрудничества в рамках Совета руководителей уполномоченных органов в области транспорта государств-членов ЕАЭС. Основной темой переговоров стала подготовка «дорожной карты» по реализаци...

ОДК внесла в Совет Федерации предложения для укрепления энергетической стратегии России

Объединенная двигателестроительная корпорация Госкорпорации Ростех внесла на рассмотрение Комитета Совета Федерации предложения по укреплению энергетической стратегии России. Компания ОДК Инжиниринг предложила расширить меры государственной поддержки отечественного энергомашиностроения и сформировать предсказуемый спрос на критичное энергетическое оборудование. Предложения были озвучены в рамка...

Россия и Китай обсудили создание МТОР и инфраструктуры, привлечение инвесторов на остров Большой Уссурийский

В городе Фуюань (КНР) состоялось третье заседание Специальной рабочей группы по сопряжению развития российской и китайской частей острова Большой Уссурийский. Мероприятие прошло под сопредседательством заместителя Министра Российской Федерации по развитию Дальнего Востока и Арктики Виталия Алтабаева при участии представителей Корпорации развития Дальнего Востока и Арктики (КРДВ), правительства Ха...

В Москве состоялось заседание комиссии Госсовета РФ по направлению «Энергетика» по итогам 2025 года

В ходе первого заседания комиссии Государственного Совета РФ по направлению «Энергетика» были подведены итоги деятельности за 2025 год и утвержден план работы на 2026 год. Центральной темой обсуждения стали стратегические подходы к повышению энергетической эффективности национальной экономики. Заседание прошло в Москве под председательством руководителя комиссии, главы Республики Саха (Якутия) Айс...

Геополитическое противостояние в Тихом океане: США хотят разместить базу у «ворот» китайского порта

Геополитическое противостояние в Тихом океане: США хотят разместить базу у «ворот» китайского порта Планы США по усилению своего военного присутствия в Южной Америке получили конкретные очертания. Как сообщает Bloomberg, Вашингтон намерен построить в Перу военно-морскую базу. Ключевая деталь — объект может быть размещён всего в 80 км от стратегически важного порта, принадлежащего Китаю, ч...

Мощность энергосистемы Якутии к 2030 году увеличится в два раза

На территории Якутии одновременно реализуется ряд крупных энергетических проектов, которые в ближайшие годы позволят почти вдвое увеличить установленную мощность региональной энергосистемы. Об этом сообщил Айсен Николаев - глава РС (Я), председатель комиссии Госсовета РФ по направлению «Энергетика». По его словам, на сегодняшний день суммарная установленная мощность всех энергоустановок в респу...

16 Апреля 2009

Деаэрационные установки молочных машин

Деаэрационные установки молочных машин

В мoлoчнoй прoмышленнocти в cвязи co cпецификoй технoлoгий oбрабoтки иcключительнoе применение пoлучили деаэратoры вакуумнoгo типа, в кoтoрых cocтoяние кипения продукта cоздаетcя вакуумированием парогазовой cмеcи до давления наcыщения и ниже при cоответcтвующей температуре подачи продукта в деаэратор. Кировcкое научно-производcтвенное предприятие ОКБ «Молочные машины руccких» разработало деаэрационную уcтановку центробежно-пленочного типа.


Наличие в воде киcлорода и агрессивных анионов, особенно хлорированных, резко сокращает срок работы тепловых сетей. За счет деаэрации и водоподготовки изменяются стационарный потенциал, значения критических потенциалов и критических токов металла. Это повышает сопротивление коррозии.

Качество молочных продуктов, связанное с наличием «кормового» привкуса, сохранностью питательных веществ и витаминов, во многом определяется наличием растворенных газов. ОКБ «Молочные машины русских», организованное для обеспечения молокоперерабатывающей отрасли самой современной техникой, производит технологическое и организационно-технологическое оборудование, отвечающее высоким стандартам качества.

Существующая в настоящее время теория объясняет процесс удаления растворенных газов действием механизма дисперсии с выделением его в виде мелких пузырьков, образующихся в продукте, находящемся в состоянии насыщения (кипения). Организация процесса распыления в деаэраторе выполнятся по двум схемам:

     - тангенциальная подача продукта в деаэратор, обеспечивающая образование пленки, вращающейся по стенке аппарата, – центробежно-пленочный деаэратор;
     - подача продукта в деаэратор в виде струй, распадающихся на капли, – струйно-капельный деаэратор.

Анализ схем выявил следующие преимущества тангенциальной подачи: движение пленки по стенке центробежно-пленочного деаэратора и вращение столба продукта в нижней части деаэратора обеспечивают перемешивание слоев жидкости, что способствует более эффективному выделению растворенных газов. В струйно-капельных деаэраторах, наоборот, слои продукта в струях, каплях и в столбе нижней части деаэратора относительно друг друга неподвижны Обеспечение работы деаэратора требует значительной площади поверхности теплообмена, что приводит к увеличению габаритных размеров и металлоемкости конструкции.

Конструкционные особенности деаэратора

В зависимости от диаметра деаэратора и скорости подачи продукта расчет формы воронки позволил создать оригинальные конструкции подающего патрубка и формы нижнего дна. В результате были обеспечены эффективное гашение воронки и устойчивость работы откачивающего насоса. Конструкция подающего патрубка формирует тонкую пленку продукта, увеличивая площадь выделения газов.

В комплект входят: вакуумная емкость, в т.ч. встроенный охладитель и моечное устройство, рама с площадкой обслуживания, вакуумный и продуктовый насосы, запорно-регулирующая арматура, трубопроводы и контрольно-измерительные приборы.

По результатам испытаний, при подаче в деаэратор продукта, перегретого на 4-5°C, снижение концентрации веществ, определяющих привкусы молочных продуктов, составило 8-10 раз от исходной.

Опыт эксплуатации разработанных ранее на предприятии деаэрационных установок, которые входят в состав ПОУ, позволил провести их совершенствование с учетом гидравлического анализа. При изменении режимов работы универсальной пастеризационной установки изменяется главная характеристика продуктового насоса. Это очень серьезно сказывается на стабильности работы деаэратора. Поскольку в нем происходит разрыв транспортного потока, то при изменении режимов возможна трансформация уровня жидкости, что определенным образом влияет на работу насоса после деаэратора и в итоге - на производительность всей линии. Выбор насоса здесь также рассчитывается индивидуально для каждой установки и с учетом видоизменения гидравлического сопротивления, а расходная характеристика стабилизируется при помощи частотного преобразователя.

Управление частотным преобразователем происходит благодаря специальным датчикам, измеряющим давление в деаэрационной установке с учетом заданного вакуума при помощи специальных программ. Так независимо от режимов работы технологической линии в баке деаэратора поддерживается постоянный уровень жидкости.

Кроме того, для обеспечения качественной работы насоса, установленного после деаэратора, дополнительно спроектирована рубашка охлаждения жидкости в нижней части бака деаэратора и проведен расчет размера выходного патрубка. Изменены конденсатор, оригинальная конструкция которого выполнена в виде трубной решетки, а также конструкция патрубка входа продукта, предназначенная для более качественного образования центробежной пленки, способствующей эффекту дегазации.


Центробежные насосы для перекачки жидких пищевых продуктов

Современная линия рассчитана на быстро изменяемые режимы работы, при этом происходит смена сопротивления всей системы, что однозначно влияет на главную характеристику продуктового насоса. Например, переключение с малого выдерживателя на более длительный в пастеризационно-охладительной установке увеличивает гидравлическое сопротивление системы. В результате величина расхода подающего насоса может измениться, что приведет к разбалансировке работы всей установки. Для унификации производства разработанных насосов основной типоряд решено определять по размерам рабочего колеса.

Одним из необходимых расчетов теплообменных установок является расчет по гидравлическим потерям. Зная потери в транспортном потоке установки, посредством специального клапана можно создать завышенное гидравлическое сопротивление, т.е. постоянное давление (т.н. «подпор» потока) при любых заданных режимах работы. По нему рассчитывается либо подбирается подающий насос с напорной характеристикой, равной или превышающей это давление. В этом случае на разных режимах гидравлическое сопротивление системы изменяется незначительно, но расходная характеристика насоса неизбежно будет изменяться. Для обеспечения ее постоянной величины насос должен комплектоваться частотным преобразователем и счетчиком-расходомером.

Разработанное программное обеспечение системы позволяет на основании сигнала расходомера управлять насосом, изменяя частоту вращения электродвигателя, тем самым сохраняя заданный расход на любых режимах работы линии и обеспечивая стабильность технологического потока. В поточных установках приема молока для определения количества принимаемого сырья наибольшее распространение получили индукционные расходомеры, обеспечивающие при относительно невысокой цене погрешность измерений до ±0,25%. На практике заданную погрешность получить достаточно сложно по причинам, связанным с особенностями конструкции и наличием в молоке воздуха.

Воздух, объем которого может достигать 6%, попадает в молоко в результате аэрации при перекачивании центробежными насосами, а также при хранении и транспортировании в не полностью заполненных резервуарах и цистернах. Поэтому при приеме молока необходимо удаление воздуха из продукта с помощью специальных воздухоотделителей.
По конструкционной схеме забора молока различают следующие поточные установки приема: с использованием центробежного насоса и с применением принудительного разряжения, создаваемого вакуумным воздухоотделителем во всасывающем трубопроводе.

При скачивании молока согласно схеме с использованием центробежного самовсасывающего насоса нужно обязательно выполнять некоторые условия. Так, необходимо предварительное вручную заполнить полости насоса;, при этом всасывающий трубопровод должен иметь вертикальные и горизонтальные участки без образования провисающих петель, а заборный патрубок молоковоза надо расположить выше всасывающего патрубка центробежного насоса. На практике скачивание молока зачастую производят погружением сливного рукава через горловину цистерны. В результате при размещении рукава образуются провисающие участки петли.

При этом не обеспечивается полное скачивание молока, и для удаления всех остатков необходимо ручное опорожнение посредством последовательного поднятия участков рукава. Выполняется это не всегда, в результате чего возникают дополнительные неучтенные объемы молока. Для снижения погрешности измерения предлагается использовать схему с принудительным вакуумированием, принцип работы которой заключается в следующем. После подключения рукава к молоковозу в вакуумном воздухоотделителе создается разрежение. Под действием вакуума из всасывающего рукава удаляется воздух, затем воздухоотделитель постепенно заполняется молоком, что обеспечивает гарантированное заполнение всасывающего патрубка насоса с последующим его включением.

Так на практике устраняются неизбежные организационные недостатки работы схемы. Насос постоянно находится под заполнением без образования воздушных пробок и создает равномерный постоянный поток.

Кол-во просмотров: 19820
Яндекс.Метрика