ВАЖНЫЕ НОВОСТИ
Ректор и сотрудники МИФИ удостоены наград Министерства обороны РФ

В Министерстве обороны Российской Федерации высоко оценили работу ректора и сотрудников НИЯУ МИФИ – сегодня им вручили заслуженные награды. Медалями Минобороны России «За помощь и милосердие» награждены ректор НИЯУ МИФИ Владимир Шевченко и начальник военного учебного центра университета Андрей Коростелев. Эта награда – признание их личных заслуг в оказании содействия военнослужащим,...

Помощник Президента РФ Николай Патрушев в рамках визита в Якутию оценил перспективы развития Жатайской судоверфи

В рамках рабочей поездки в Якутск помощник Президента РФ, председатель Морской коллегии РФ Николай Патрушев вместе с главой Республики Саха (Якутия) Айсеном Николаевым посетил Жатайскую судоверфь — ключевой объект для строительства судов, обеспечивающих перевозку жизненно важных грузов в рамках Северного завоза. Судоверфь, находящаяся на территории опережающего социально-экономического ра...

Увеличенная скидка на лёгкие коммерческие автомобили по программе льготного лизинга в 20% продлена до конца года

По поручению Первого вице-премьера Дениса Мантурова Минпромторг России возобновил действие увеличенной скидки на лёгкие коммерческие автомобили (ранее была введена на период с 8 сентября до 1 октября). Она продлена до конца 2025 года. Напомним, в сентябре в качестве одной из антикризисных мер, направленных на поддержание темпов обновления парков лёгкого коммерческого транспорта, скидка на таки...

Минпромторг : Для рыбной отрасли сдали 46 судов по заключенным с 2018 года контрактам

Договоры на строительство 65 рыбопромысловых судов и 42 краболов заключены с 2018 года, из них сданы уже 46 судов. Об этом сообщил глава Минпромторга РФ Антон Алиханов на правительственном часе в Госдуме. Практически все новые суда у нас строятся с мерами господдержки, особенно востребован механизм квот под киль. С 2018 года заключены договоры на строительство 65 рыбопромысловых судов, 42 крабо...

«НПК ОВК» готова к обновлению вагонного парка России, но для этого нужны системные меры господдержки

На расширенном заседании Комитета по транспорту Торгово-промышленной палаты РФ, прошедшем в преддверии выставки «Транспорт России», обсуждалась актуализация Транспортной стратегии страны. В ходе мероприятия с докладом о критической ситуации в вагоностроительной отрасли выступил коммерческий директор ПАО «НПК Объединенная Вагонная Компания» (ОВК) Павел Ефимов. Ефимов указал на резкое сокращение ...

Правительство РФ актуализировало ставки таможенных сборов на ввозимые товары

Актуализация ставок таможенных сборов осуществляется с учетом уровня накопленной инфляции в рамках обязательств Российской Федерации во Всемирной торговой организации. По мнению ведомства, их значения должны быть сопоставимы с затратами на проведение таможенных операций. Изменения вступят в силу с 1 января 2026 года, чтобы участники внешнеторговой деятельности смогли адаптироваться к новым условия...

2 Июня 2011

Определение необходимости промывки двигателя

Определение необходимости промывки двигателя
Газoтурбинная уcтанoвка
Спocoб экcплуатации газoтурбиннoй уcтанoвки

Автoры: Инoземцев Алекcандр Алекcандрoвич, Пoлатиди Сoфoкл Харлампoвич, Халиуллин Виталий Фердинандoвич, Вoрoнкoв Виктор Евгеньевич, Саженков Алекcей Николаевич

Изобретение отноcитcя к облаcти экcплуатации газотурбинных уcтановок, в чаcтноcти оценке техничеcкого cоcтояния газотурбинного двигателя и оcущеcтвлению контроля степени загрязнения газовоздушного тракта двигателя. Технический результат - повышение достоверности определения необходимости промывки двигателя за счет повышения точности и частоты контроля степени загрязнения в процессе эксплуатации установки. Указанный технический результат достигается тем, что предварительно на этапе проектирования ГТУ формируют эксплуатационную математическую модель работы ГТУ, в процессе заводских сдаточных испытаний перед началом эксплуатации дополнительно измеряют температуру газов за турбиной газогенератора t*т, абсолютное давление воздуха за компрессором Р*к, атмосферное давление Рн, и определяют исходные значения tт исх, Рк исх на контролируемом режиме при принятых атмосферных условиях, далее в процессе эксплуатации, ежедневно, на эксплуатационном режиме работы газотурбинной установки осуществляют измерение текущих значений параметров nггтек, t*ттек, Р*ктек, t*вхтек, Рнтек на основе первой и второй функциональных зависимостей, с учетом величины nгг, вычисляют Рк режтек и tт режтек, и также ежедневно осуществляют сравнение этих параметров с Рк исх и tт исх, с получением величин Ркк режк исх и tт=tт реж-tт исх, которые в свою очередь сравнивают с заранее заданными величинами 1 и 2, при этом в случае, если Рк1 и tт2, продолжают эксплуатацию указанной ГТУ без ограничений, а если Рк<1 или tт>2, то проводят визуально-оптический контроль компрессора на предмет наличия повреждений и при отсутствии последних выполняют промывку газовоздушного тракта ГТУ.

Основной эксплуатационной причиной снижения мощности газотурбинной установки является загрязнение газовоздушного тракта. Эффективность эксплуатации газотурбинных установок в подобных случаях зависит от своевременной диагностики ухудшения параметров и выполнения очистки газовоздушного тракта для восстановления мощности.

Известен способ эксплуатации энергетической газотурбинной установки (ГТУ), предусматривающий очистку газовоздушного тракта на основе данных о снижении вырабатываемой электрической мощности (N) по сравнению с техническим состоянием ГТУ перед началом эксплуатации [Цанев С.В., Буров В.Д., Ремезов А.Н. Газотурбинные и парогазовые установки тепловых электростанций. М.: Издательство МЭИ, 2002 г., стр.178-179].

Измерение параметра N производят для одинаковых условий на входе в ГТУ при номинальном уровне нагрузки, скорректированной температуре газов на выходе ГТУ и полностью открытом положении входного направляющего аппарата компрессора. После проведения очистки проточной части ГТУ производят повторное измерение электрической мощности для подтверждения восстановления характеристик.

Недостатком известного способа является невозможность использования диагностического признака - снижения электрической мощности N при оценке степени загрязнения ГТУ для механического привода.

Известен также способ оценки технического состояния газоперекачивающих агрегатов с газотурбинным приводом на основе многофакторного диагностирования параметров их проточной части с использованием комплекса нелинейных математических моделей ГТУ и центробежного нагнетателя, которые согласовывают между собой через параметры механической мощности и частоты вращения силового вала [Патент РФ 2217722, G01M 5/00, 2003 г.]. О неисправностях в работе судят по изменениям во времени параметров состояния ГТУ и интегральным показателям работы газоперекачивающего агрегата.

Недостатками данного аналога и подобного способа, реализованного в системе диагностирования газоперекачивающих агрегатов [Патент РФ 2245533, G01M 15/00, F04D 27/02, 2005 г.] и предусматривающего параметрическую, вибрационную, визуально-оптическую, ресурсную и экспертную диагностику с последующим проведением ремонтно-восстановительных работ, являются существенный объем регистрируемой параметрической информации, сложность диагностической аппаратуры, необходимость в высокой квалификации обслуживающего персонала, что неизбежно приводит к повышенным эксплуатационным расходам.

Наиболее близким к заявляемому способу является способ эксплуатации турбореактивного двигателя по его техническому состоянию, предусматривающий периодический вывод двигателя на частоту вращения ротора низкого давления nРНД, близкую к полученной в начале эксплуатации для максимального режима, далее создают на турбине перепад давления, близкий к перепаду давления в начале эксплуатации на этой частоте вращения nрнд, измеряют частоту вращения ротора высокого давления nрвд (газогенератора), сравнивают ее величину со значением, полученным в начале эксплуатации, и при увеличении nрвд более чем на 1,5% осуществляют промывку газового тракта двигателя до уменьшения этого отклонения на 1,52% [Патент РФ 2168163, G01M 15/00, 2001 г.].

Основным недостатком прототипа является необходимость в специальном выводе двигателя на максимальный режим, что приводит к дополнительным эксплуатационным расходам, связанным с ускоренной выработкой ресурса горячей части двигателя и тратам топлива на периодические проверки. Кроме того, параметр частоты вращения ротора газогенератора (nгг) как диагностический признак не в полной мере учитывает изменение расходной характеристики компрессора из-за загрязнения газовоздушного тракта. Поэтому известный способ не обеспечивает высокую достоверность определения необходимости промывки газовоздушного тракта.

Техническая задача - исключение эксплуатационных затрат, связанных с необходимостью проведения специальных действий по оценке состояния газовоздушного тракта, и повышение достоверности определения необходимости его промывки за счет повышения точности и частоты контроля степени загрязнения в процессе эксплуатации установки.

Указанная задача решена за счет того, что в способе эксплуатации газотурбинной установки по техническому состоянию газотурбинного двигателя (ГТД) путем периодического определения отклонений параметров ГТД, в частности величины частоты вращения ротора газогенератора nгг, измеренной в процессе эксплуатации установки, от исходных значений параметров, в частности nгг исх, определенной в процессе заводских сдаточных испытаний перед началом эксплуатации на контролируемом режиме работы, и выполнения очистки газовоздушного тракта газотурбинной установки при изменении отклонений параметров сверх заранее установленных величин, согласно изобретению предварительно на этапе проектирования ГТУ формируют эксплуатационную математическую модель работы ГТУ, включающую первую функциональную зависимость в виде

Рк реж=f(Р*к, Рн, К1, Крк, nгг),

где Рк реж - величина Р*к, приведенная к принятым атмосферным условиям при определении исходных значений параметров и контрольному режиму с учетом программ управления ГТД установки, предназначенных для обеспечения заданных эксплуатационных характеристик ГТД;

Р*к - абсолютное давление воздуха за компрессором;

Рн - атмосферное давление;

K1 - коэффициент приведения Р*к;

Крк - коэффициент приведения Р*к к контролируемому режиму;

nгг - отклонение величины nгг от исходного значения, вычисленное по формуле: nгг = nгг реж - nгг исх,

где nгг реж - величина nгг, приведенная к принятым атмосферным условиям при определении исходных значений параметров, с учетом программ управления ГТД, предназначенных для обеспечения заданных эксплуатационных характеристик ГТД,

nгг реж =f(nгг, К2),

где К2 - коэффициент приведения nгг;

nгг исх - исходное значение nгг на контролируемом режиме при принятых атмосферных условиях;

и вторую функциональную зависимость в виде

tт реж=f(t*т, К3, Ктт, nгг),

где tт реж - величина t*т, приведенная к принятым атмосферным условиям при определении исходных значений параметров и контрольному режиму с учетом программ управления ГТД, предназначенных для обеспечения заданных эксплуатационных характеристик ГТД;

t*т - температура газов за турбиной газогенератора;

К3 - коэффициент приведения t*т;

Ктт - коэффициент приведения t*т к контролируемому режиму.

В процессе заводских сдаточных испытаний перед началом эксплуатации дополнительно на контрольном режиме измеряют температуру газов за турбиной газогенератора t*т, абсолютное давление воздуха за компрессором Р*к, атмосферное давление Рн, и определяют исходные значения tт исх, Рк исх на контролируемом режиме при принятых атмосферных условиях.

Коэффициенты К1, K2, К3 представляют собой коэффициенты приведения параметров Р*к, nгг, t*т соответственно к принятым атмосферным условиям при определении исходных значений параметров с учетом программ управления ГТД, предназначенных для обеспечения заданных эксплуатационных характеристик ГТД.

Величины параметров nгг исх, tт исх и Рк исх заносят в формуляр указанного ГТД.

Далее в процессе эксплуатации ежедневно на эксплуатационном режиме работы газотурбинной установки осуществляют измерение текущих значений параметров nггтек, t*ттек, Р*ктек, t*вхтек, Рнтек на основе первой и второй функциональных зависимостей, с учетом величины nгг, вычисляют Рк режтек и tт режтек, и также ежедневно осуществляют сравнение этих параметров с Рк исх и tт исх, с получением величин Ркк режк исх и tт=tт реж-tт исх, которые в свою очередь сравнивают с заранее заданными величинами 1 и 2. При этом в случае, если Рк1 и tт2 продолжают эксплуатацию указанной ГТУ без ограничений, а если Рк<1 или tт>2, то проводят визуально-оптический контроль компрессора на предмет наличия повреждений и при отсутствии последних выполняют промывку газовоздушного тракта ГТУ.

В отличие от прототипа мониторинг параметров ГТУ осуществляют в процессе штатной эксплуатации, т.е. без специальных остановов и/или выходов на заранее заданный контрольно-проверочный режим, т.е. без осуществления специальных действий, что приводит к существенному снижению затрат.

Применение в качестве диагностических признаков загрязнения газовоздушного тракта параметров Р*к и t*т как наиболее точно отражающих ухудшение характеристик компрессора позволяет повысить точность контроля степени загрязнения в процессе эксплуатации по заявляемому способу.

Ежедневная периодичность контроля в максимальной степени способствует достоверности в определении необходимости очистки газовоздушного тракта и исключает запоздалую или преждевременную очистку.

Способ осуществляют следующим образом.

1. Предварительно на этапе проектирования ГТУ формируют эксплуатационную математическую модель работы ГТУ, включающую первую функциональную зависимость в виде:

Рк реж=f(Р*к, Рн, К1, Крк, nгг),

и вторую функциональную зависимость в виде:

tт реж=f(t*т, К3, Ктт, nгг).

2. В процессе заводских сдаточных испытаний ГТУ, т.е. перед началом эксплуатации, на контрольных режимах работы ГТУ наряду с другими параметрами, в частности nгг, измеряют температуру газов за турбиной газогенератора t*т, абсолютное давление воздуха за компрессором Р*к, температуру воздуха на входе в ГТД t*вх и атмосферное давление Рн, затем определяют исходные значения nгг исх, tт исх, Рк исх на контролируемом режиме при принятых атмосферных условиях. Величины параметров nгг исх, tт исх, Рк исх заносят в формуляр указанного ГТД.

3. Далее в процессе эксплуатации ежедневно с помощью штатной системы автоматического управления на эксплуатационном режиме работы указанного двигателя осуществляют измерение текущих значений параметров nггтек, t*ттек, Р*ктек, t*вхтек, Рнтек на основе первой и второй функциональных зависимостей с учетом величины nгг и вычисляют Рк режтек и tт режтек.

4. Ежедневно осуществляют сравнение величин Рк режтек и tт режтек с Рк исх и tт исх соответственно с получением величин Рк и tт. Осуществляют сравнение указанных величин с заранее заданными величинами 1 и 2. Величины 1 и 2 выбраны из условия обеспечения требуемого уровня мощности ГГУ не ниже заданного предела по нормативной или эксплуатационно-технической документации.

5. В случае, если Рк1 и tт2 продолжают эксплуатацию указанной ГТУ без ограничений, а если Рк<1 или tт>2, то проводят визуально-оптический контроль компрессора на предмет наличия повреждений (например, лопаток компрессора), которые могут стать причиной ухудшения параметров ГТУ и снижения ее мощности.

6. При отсутствии дефектов по результатам осмотра выполняют очистку газовоздушного тракта ГТУ любым известным способом.

После очистки производят повторное определение величин Рк и tт и при выполнении условий Рк1 и tт2 продолжают эксплуатацию указанного двигателя ГТУ.

Заявляемое техническое решение реализовано и опробовано эксплуатационными испытаниями в составе газотурбинной установки мощностью 16 МВт типа ГТУ-16П разработки ОАО «Авиадвигатель» (Россия), используемой в качестве привода нагнетателя природного газа магистральных газопроводов. Результаты испытаний и последующая эксплуатация в составе газоперекачивающих агрегатов в системе ОАО «Газпром» полностью подтвердили эффективность изобретения и своевременную диагностику ухудшения параметров ГТУ из-за загрязнения газовоздушного тракта.

Кол-во просмотров: 16641
Яндекс.Метрика