
Автoры: Бледнoва Жеcфина Михайлoвна, Чаевcкий Михаил Иocифoвич, Сафрoнoв Алекcандр Владимирoвич, Кoвалев Вадим Юрьевич
Изoбретение oтноcитcя к химико-термичеcкой обработке металлов, в чаcтноcти к азотированию. Споcоб включает размещение детали в вакуумной камере и приcоединение детали к выcоковольтному иcточнику питания, герметизацию вакуумной камеры и cоздание в ней выcокого вакуума c поcледующей заменой на атмоcферу чистого азота, получение стабильной плазмы тлеющего разряда в атмосфере чистого азота с помощью высоковольтного источника питания и потока электронов от вольфрамовой нити накала, установленной параллельно оси вакуумной камеры. Поток электронов создают нагревом нити накала до температуры 2000-2500°С, при этом поток электронов сжимают электромагнитным полем с образованием плазмы тлеющего разряда в виде диска объемом


Недостатком аналога является азотирование всей детали в течение продолжительного времени (например, до 100 часов) из-за низкой температуры рабочей зоны (например, температуры 400

Известен способ азотирования деталей в плазме низкого давления при помощи титана или его сплавов в относительно низкой температуре (480°С) и низком давлении в самой плазме для повышения усталостной прочности этих деталей (патент US

Недостатком прототипа является продолжительное азотирование всей детали из-за низкой температуры рабочей зоны, использование различного рода заслонок, жаростойкого клея или иных способов изоляции необрабатываемой части детали, а также ограниченного круга материалов (титан или его сплавы), что снижает экономическую эффективность способа.
Задачей предлагаемого технического решения является повышение износостойкости и усталостной прочности за счет проведения локального азотирования деталей, исключающего перегрев самой детали, применения заслонок или иных способов изоляции мест, не подлежащих азотированию, и увеличение тем самым экономической эффективности.
Поставленная задача решается с помощью азотирования детали в вакуумной камере с присоединением этой детали к высоковольтному источнику питания, герметизацией вакуумной камеры и созданием в ней высокого вакуума с последующей заменой вакуума на атмосферу чистого азота, получением стабильной плазмы тлеющего разряда в атмосфере чистого азота с помощью высоковольтного источника питания и потока электронов от вольфрамовой нити накала, устанавливаемой параллельно оси вакуумной камеры, который создают с помощью нагрева этой нити до температуры 2000-2500°С, при этом полученный поток электронов сжимается электромагнитным полем до образования плазмы тлеющего разряда в виде диска объемом

Предложенный способ позволяет выполнять азотирование любой части детали вне зависимости от ее формы, не опасаясь ее перегрева, за счет ограниченного объема плазмы, внутри которой находится обрабатываемая зона, и исключить использование различного рода заслонок, жаростойкого клея или иных способов изоляции необрабатываемой части детали.

Способ осуществляется следующим образом. Обрабатываемая деталь 3 помещается в вакуумную камеру 5 и присоединяется к высоковольтному источнику питания 8 через высоковольтный ввод 1. Уплотнительное устройство 2 является изолятором между высоковольтным вводом и вакуумной камерой, которая имеет отверстие 7 для подсоединения форвакуумного и диффузионного насосов. После размещения обрабатываемой детали вакуумная камера герметизируется и в ней создается вакуум с последующей заменой на атмосферу чистого азота, подаваемого через трубу 4. При этом в вакуумной камере создается остаточное давление азота (1,3 - 0,13)·10-3 Па.
Возникновение и стабильное существование плазмы тлеющего разряда в атмосфере чистого азота осуществляется с помощью высоковольтного источника питания и потока электронов от вольфрамовой нити накала 6, которая переменным током от низковольтного источника питания 12 через электровводы 9 нагревается до температуры 2000-2500°С. Этих условий достаточно для создания объема плазмы тлеющего разряда 11.
Применение индукционной катушки с током 10 позволяет создать электромагнитное поле, сжимающее поток электронов от вольфрамовой нити, и образовать ограниченный объем плазмы тлеющего разряда в виде диска, с помощью которого выполняется локальное азотирование требуемой части любой металлической детали, габариты которой укладываются в размерах диска плазмы тлеющего разряда.
Предложенный способ поясняется на следующих примерах.
Пример 1. Азотирование участка детали длиной l=15 см, выполненное при температуре нити накала 2460°С и остаточном давлении азота 1,1·10-3 Па в вакуумной камере диаметром D=50 см, проводилось при длине нити накала t=3 см в диске плазмы объемом:
V=

При этом весь обрабатываемый участок был разделен на секции, количество которых пропорционально длине нити накала:
n=l/t=15/3=5 секций.
Обработка этих секций велась при движении детали сквозь неподвижный диск плазмы.
Пример 2. Азотирование участка детали длиной l=5 см выполнялось при температуре нити накала 2300°С и остаточном давлении азота 0,9·10-3 Па в вакуумной камере диаметром D=50 см при длине нити накала t=5 см в диске плазмы объемом:
V=

Разделение обрабатываемого участка на секции не производилось, так как длина нити накала равна длине обрабатываемого участка. Обработка участка велась при неподвижной детали и диске плазмы.