
Автoры: Тарнoпoльcкий Ваcилий Алекcандрoвич, Прoфатилoва Ирина Алекcандровна, Сафронов Дмитрий Вадимович, Стенина Ирина Алекcандровна, Яроcлавцев Андрей Бориcович.
Изобретение отноcитcя к электротехничеcкой промышленноcти и может быть иcпользовано при производcтве модифицированного катодного активного материала литий-ионных аккумуляторных батарей для питания портативной электроники, электроинcтрумента, электротранcпорта. Предложенный наноразмерный модифицированный композиционный материал cоответcтвует cтруктурной формуле LipFexM1-x(PO4)t(AO4)1-t, где 0<р<2; 0<х<1; 0


Уровень техники
Известны литий-ионные аккумуляторные батареи с катодом, электрохимически активный материал которого представляет собой сложные оксиды LiCoO2, LiMn2O4, LiCo1/3Ni1/3Mn1/3O2.
Подобные материалы синтезируются посредством нескольких общих методов, среди которых наиболее распространены так называемые «растворные». Они предполагают образование промежуточных продуктов в виде растворов. Известны патенты США


Также известен катодный активный материал, LiFePO4*C (оливин) по патенту США

К аналогам предполагаемого изобретения также относится техническое решение по патенту США

Согласно этому патенту LiFePO4 получают смешением реагентов в растворе с последующим соосаждением прекурсоров или выпариванием жидкой фазы. Наноразмерный кристаллический LiFePO4 получают после выдержки прекурсоров при температуре от 600 до 800°C. Существенным недостатком этого способа получения активного материала является его низкая электронная и ионная проводимость.
Наиболее близкое техническое решение, принятое за прототип, по патенту Канады

Сущность изобретения
Целью настоящего изобретения является разработка нового материала для катода литий-ионных аккумуляторов (ЛИА) с устранением перечисленных недостатков LiFePO4. Выгодным отличием разработанного материала от прототипа является его повышенная ионная проводимость, обуславливающая увеличение удельной мощности, продолжительности циклирования, повышение емкости и стабильности ЛИА. Таким образом, изобретение позволит решить проблемы производства и эксплуатации ЛИА и расширит возможности их использования.
Техническим результатом является получение активного катодного материала с высокой ионной проводимостью, представляющего собой наноразмерный композиционный материал на основе LiFePO4·C, модифицированный и оптимизированный для эффективной обратимой интеркаляции ионов лития. Этот допированный композиционный материал представляет собой наноразмерные кристаллы состава LipFexM1-x(PO4)t(AO4)1-t и углеродную добавку, где M = Co, Ni, Mg, Ca, Zn, Al, Cu, Ti, Zr; A = S, Si, V, Mo; 0t


Структурные параметры, фазовая чистота и размер монокристаллов фосфата лития-железа контролируются методом рентгенофазового анализа (фиг.1). Средние линейные размеры монокристаллов фосфата составляют от 20 до 500 нм, предпочтительно - 40 нм. Этот параметр определяется по области когерентного рассеяния в спектрах рентгенофазового анализа и по данным электронной микроскопии.

Монокристаллы наноразмерного фосфата должны быть равномерно покрыты углеродным нанослоем толщиной от 1 до 20 нм (лабораторный контроль осуществлялся посредством электронной микроскопии SEM и ТЕМ, фиг.2). Размер агломератов, образующихся из монокристаллов фосфата с углеродным покрытием, не должен превышать: D50<1000 нм, где параметр D50 соответствует средневзвешенному размеру частиц, то есть 50% материала (по массе) имеет линейные размеры частиц не более 1000 нм.

Удельная емкость материала составляет >140 мАч/г при токе 0.1С (фиг.3); >80 мАч/г при токе 10С.

Отличительной особенностью материала является то, что допирование по позициям М и Р позволяет значительно повысить концентрацию точечных дефектов в литиевой подрешетке и увеличить ионную проводимость материала. Таким образом, синтезированная композиция имеет высокую электрохимическую емкость при больших (до 10С) скоростях разряда по сравнению с известными аналогами. Потери емкости после 2000 циклов не превышают 15% (фиг.4). Такая совокупность существенных признаков нового композиционного материала выражает сущность изобретения.
Заявляемый композиционный материал на основе модифицированного оливина по формуле LipFexM1-x(PO4)t(AO4)1-t·C получают способом, включающим следующие стадии:
- - Смешение в стехиометрическом соотношении основных компонентов - порошков соединений, содержащих катионы лития (оксалат, формиат, ацетат, карбонат, гидрокарбонат, фосфат, гидрофосфат или дигидрофосфат лития), железа (оксиды, гидроксиды, фосфаты, кислые фосфаты, карбонаты или гидрокарбонаты либо их сочетания), фосфат-анионы (гидрофосфат лития, дигидрофосфат лития, гидрофосфат аммония, дигидрофосфат аммония) и органический компонент (сажа, глюкоза, сахароза, лимонная кислота, полиэтиленоксид, полистирол, этиленгликоль, поливиниловый спирт, фенол-формальдегидные смолы либо оксалаты, формиаты, ацетаты лития или аммония) в качестве прекурсора углеродной добавки;
- - На стадии смешения основных компонентов возможно добавление присадок, содержащих катион металла M для допирования по позициям железа, а также сульфаты, силикаты лития или аммония, молибден- и ванадийсодержащие соединения для допирования по позициям фосфора.
- - Для увеличения площади соприкосновения реагентов и улучшения контактов между частицами проводят механическую активацию смеси с помощью перетирания на шаровой мельнице;
- - Далее реакционную смесь помещают в печь и выдерживают при температуре от 500 до 1200°C. Время выдержки должно быть достаточным для полного протекания взаимодействия реагентов и образования продуктов реакции. Выбор нижнего температурного предела обусловлен недостаточной скоростью и степенью протекания твердофазного взаимодействия и кристаллизации продукта при температуре ниже 500°C. При температурах выше 1200°C скорость роста кристаллов продукта реакции становится слишком высокой, начинается агломерация частиц фосфата, что приводит к образованию крупнокристаллического продукта с недостаточной электрохимической активностью;
- - На последней стадии полученный продукт измельчают в шаровой мельнице, при необходимости добавляя углерод;
Лабораторные испытания полученных образцов катодного активного материала LipFexMy(PO4)t(AO4)1-t·C проводили в тестовых литиевых ячейках и литий-ионных аккумуляторах емкостью 3 мАч. Для определения предпочтительных вариантов модификации материала допирующими ионами определяли разрядную емкость на высоких токах. В таблице 1 представлены наиболее удачные варианты допирования металлами по позициям железа.
Таблица 1 | |||||
Емкость образцов LipFexM1-x(PO4)t·C с предпочтительными вариантами допирования по позициям Fe | |||||
![]() | LiFePO4 исходный материал | LiFe0,9Ni0,1PO4 (допирование: 10% Ni) | LiFe0,9Mg0,1PO4 (допирование: 10% Mg) | Li0,95Fe0,95Al0,05PO4 (допирование: 10% Al) | LiFe0,95Co0,1PO4 (допирование: 10% Со) |
Емкость на токе 10С, мАч/г | 86 | 88 | 92 | 89 | 88 |
В таблице 2 представлены предпочтительные варианты допирования по позициям фосфора.
Таблица 2 | |||
Емкость образцов LipFe(PO4)t(AO4)1-t·C с предпочтительными вариантами допирования по позициям Р | |||
![]() | LiFePO4 (исходный материал) | Li1,05Fe(PO4)0,95(SiO4)0,05 (допирование: 5% Si) | Li0,95Fe(PO4)0,95(SO4)0,05 (допирование: 5% Si) |
Емкость на токе 10С, мАч/г | 86 | 94 | 90 |
Таким образом, наибольшую разрядную емкость на токе 10С удалось достичь при помощи модификации материала LipFexMy(PO4)t(AO4)1-t·C никелем, магнием, алюминием и кобальтом по позициям железа, а также кремнием или серой по позициям фосфора.