ВАЖНЫЕ НОВОСТИ
Минпромторгом России утверждены изменения в Перечене продукции для параллельного импорта

Минпромторг России внес очередные изменения в перечень товаров, в отношении которых не применяются требования о защите интеллектуальных прав со стороны правообладателей (патентообладателей), и, которые были введены в оборот за пределами территории Российской Федерации. Механизм параллельного импорта действует уже более двух лет и за это время доказал свою эффективность, позволив обеспечить потр...

Строительство малой атомной станции в Якутии включено в новый президентский нацпроект

Проект строительства малой атомной станции в Усть-Янском районе Якутии стал частью национального проекта в области технологического лидерства «Новые атомные и энергетические технологии». Атомная станция малой мощности (АСММ) с реакторной установкой Ритм-200Н, расположенная рядом с поселком Усть-Куйга, будет играть ключевую роль в развитии Арктической зоны Якутии. Завершение строительства планирует...

Компания АЛРОСА добыла в Якутии 260-каратный алмаз на месторождении Эбелях

Компания «Алмазы Анабара», входящая в группу АЛРОСА, в конце лета 2024 года добыла на месторождении Эбелях, расположенном в Анабарском районе Республики Саха (Якутия), крупный алмаз ювелирного качества весом 262,5 карата. Это прозрачный монокристалл с единичными включениями графит-сульфида и легкими следами ожелезнения, характерный для данного месторождения. Находка была сделана ночью во время про...

Об изменении механизма предоставления промышленных субсидий производителям колесных транспортных средств

Минпромторгом России подготовлен проект постановления, предусматривающий признание утратившими силу постановлений Правительства Российской Федерации от 30 июня 2022 года №1176 и от 15 января 2024 №31. Данные изменения разработаны с целью исполнения пункта 4 постановления Правительства Российской Федерации от 25 октября 2023 года №1780. Согласно его положениям нормативно-правовые акты, регулирую...

Правительство упростило правила аккредитации ИТ-компаний

Ещё больше компаний смогут претендовать на ИТ-аккредитацию, а процесс её подтверждения станет удобнее. Соответствующие изменения приняло Правительство. Что меняется для малых технологических компаний, созданных менее 3 лет назад, отменяется критерий по проверке доли дохода от ИТ-деятельности ИT-компании из новых регионов смогут получить аккредитацию независимо от среднемесячного размера в...

В Правительстве России прошла стратсессия по транспортной мобильности

Председатель Правительства Российской Федерации Михаил Мишустин провел стратегическую сессию по национальному проекту «Промышленное обеспечение транспортной мобильности». В заседании, на котором обсудили вопросы развития промышленного потенциала для выполнения поставленных Президентом задач по улучшению транспортной мобильности, принял участие Министр промышленности и торговли Российской Федераци...

25 Октября 2011

Сплав на основе железа для изготовления изделий и оборудования, работающих в активных средах при повышенных температурах.

Сплав на основе железа для изготовления изделий и оборудования, работающих в активных средах при повышенных температурах.
Сплав на ocнoве железа
Сплав на ocнoве железа

Автoры: Арутюнян Наталия Анриевна, Зайцев Алекcандр Иванoвич, Рoдиoнoва Ирина Гаврилoвна, Шапoшникoв Никoлай Геoргиевич, Шахпазoв Евгений Хриcтoфoрoвич

Изобретение отноcитcя к облаcти металлургии, а именно к cплавам на оcнове железа, применяемым для изготовления изделий и оборудования, работающих в активных углеродcодержащих cредах при повышенных температурах. Сплав cодержит углерод, марганец, кремний, алюминий и железо при cледующем cоотношении компонентов, маc.%: углерод 2, марганец 8-14, кремний 1,5, алюминий 0,08, железо и неизбежные примеcи - оcтальное. Сплав обладает повышенной уcтойчивоcтью к разрушению в активных углеродсодержащих средах при температурах 573-1173 К за счет отсутствия нежелательных метастабильных карбидных фаз, приводящих к протеканию процесса самопроизвольного превращения металла в порошок.

В связи с возрастающей полнотой использования энергоресурсов, сырья, развитием водородной энергетики, нетрадиционных источников энергии, таких как топливные элементы, электрохимические генераторы, новых технологий и процессов каталитического синтеза, в том числе производства и переработки синтез-газа в жидкие, синтетические, моторные топлива (процессы Фишера-Тропша, Mobil, бифункциональный катализ, синтез диметилового эфира (ДМЭ)) обнаружен новый тип коррозионного разрушения металлических материалов, получивший название «самопроизвольное превращение металла в порошок» или «катастрофическая карбюризация» [1, 2]. Оно наблюдается в чистых железе, никеле, кобальте, и практически во всех сплавах на их основе [1-3] при умеренных температурах 573 -1173 К (наиболее часто 673-973 К) в активных углеродсодержащих газовых средах (для которых величина активности углерода, рассчитанная по величинам парциальных давлений компонентов газовой фазы, существенно больше единицы) и приводит как к появлению отдельных грубых дефектов - питтингов или равномерной потере металла, так и к сочетанию указанных негативных действий. При этом скорость коррозии металла достигает катастрофически больших величин.

В дальнейшем оказалось, что области проявления указанного негативного явления значительно шире. В том числе, они включают восстановление металлов из руд, отжиг и термообработку в восстановительных и контролируемых атмосферах, цементацию, трубопроводы для транспортировки и очистки восстановительных газовых смесей и т.п. Таким образом, задача поиска и разработки материалов, устойчивых к «самопроизвольному превращению металла в порошок», стоит довольно широко и затрагивает целый ряд отраслей современной промышленности.

В настоящее время механизм разрушения железа и низколегированных сталей исследован довольно подробно [1, 2]. Он включает пять стадий: 1) пересыщение металла растворяющимся углеродом; 2) выделение цементита на поверхности и границах зерен; 3) отложение графита из среды на находящемся на поверхности металла цементите; 4) разложение цементита с образованием различных форм углерода, в основном графита, и мелких, наноразмерных металлических частиц; 5) дальнейшее отложение углерода из газовой фазы, в основном в форме графита, катализируемое металлическими частицами.

С целью поиска материалов, устойчивых к «самопроизвольному превращению металла в порошок», было испытано большинство наиболее перспективных высоколегированных сталей непосредственно в промышленных условиях. Оказалось, что все изученные составы подвержены интенсивному разрушению [3]. Например, разрушение аустенитной нержавеющей стали 800Н (Ni - 31%, Cr - 21%, Si - 0,5%, Al - 0,25%, С - 0,07%, Ti - 0,3%, Fe - остальное) при 450-600°С идет практически по всей поверхности. Потери металла достигают очень высокой величины 5 мм/год, причем выделяется большое количество углерода. В никелевых сплавах 600Н (Fe-9%, Cr-16%, C-0,07%, Ti-0,2%, Ni-остальное); 601Н (Fe - 14%, Cr - 23%, C - 0,04%, Al - 1,4%, Ti - 0,5% Ni - остальное); 602CA (Fe - 9%, Cr - 25%, C - 0,2%, Al - 2,3%, Zr - 0,15%, Y - 0,1%, Ni - остальное) общая потеря металла ниже - 0,15 мм/год, однако разрушение интенсивно идет в отдельных точках. Для низколегированных марок стали скорость потери металла достигают катастрофически больших величин - до 1500 мм/год. Устойчивыми к «самопроизвольному превращению в порошок» оказались только сплав 50%Cr-50% Ni и некоторые материалы на основе хрома, но они очень дороги и трудны в производстве и обработке.

Согласно существующим данным, энергия Гиббса образования цементита Fe3C из графита и любой из модификаций (ОЦК, ГЦК) железа характеризуется положительными значениями. Следовательно, сформировавшийся в условиях, когда активность углерода больше единицы, Fe3C при дальнейшем отложении графита из углеродсодержащей среды становится нестабильным и распадается на исходные компоненты. Введение легирующих элементов Cr, Ni, Al, Si, В, Ti, Mo, W, V, Nb, Zr в сплавы железа изменяет условия образования, стабильности и дальнейших превращений цементита. Причем для каждого компонента характерно специфичное влияние.

Добавки никеля дестабилизируют цементит. О степени дестабилизации можно судить по сопоставлению величин энергии Гиббса образования карбидов цементитного типа железа и никеля при температурах, характерных для катастрофической карбюризации: fG(Fe3C)5,4 кДж/моль, fG(Ni3C)26,8 кДж/моль. Таким образом, легирование стали никелем будет приводить к осложнению процесса образования цементита, так как для этого требуется более высокое пересыщение газовой фазы по углероду или более высокие значения активности углерода в газовой смеси ас(среда). Однако образовавшийся цементит будет еще в большей степени нестабилен и подвержен распаду с образованием графита и металлического порошка.

Образование карбидов Ti, Mo, W, V, Nb, Zr при температурах самопроизвольного превращения металла в порошок, напротив, характеризуется большим выигрышем в энергии Гиббса, например, fG(TiC)-175 кДж/моль. Поэтому влияние титана на относительную устойчивость цементита незначительно. Взаимодействие металла с углеродом первоначально приводит к полному связыванию указанных элементов в стабильные карбиды, что создает некоторый инкубационный период, но не изменяет в дальнейшем процесс образования и распада цементита.

Поскольку алюминий, кремний, бор не участвуют в формировании цементита комплексного состава в сплавах железа, их влияние на условия образования и распада цементита является лишь косвенным, выраженным через изменение величин активности углерода и энергии Гиббса равновесных феррита и/или аустенита. Ввиду, как правило, низких концентраций рассматриваемых элементов в большинстве марок сталей, имеющее место изменение соотношения величин энергий Гиббса феррита, аустенита и цементита является незначительным.

Известна сталь Гадфильда (Г13), содержащая 1,2% углерода и 13% марганца, обладающая высокой износоустойчивостью при трении с давлением и ударами. Однако нет сведений, указывающих на возможность использования стали Гадфильда в качестве материала для оборудования и устройств, работающих в контакте с газовыми средами с высокой термодинамической активностью углерода [4].

Известны сплавы на основе железа, содержащие хром и углерод (2,8-5,1 мас.% хрома и до 0,15 мас.% углерода) и предназначенные для использования в активных углеродсодержащих газовых средах при температурах 673-973 К [5] - (прототип).

Однако введение хрома в сплавы железа только замедляет, но не предотвращает разрушение материалов в условиях «самопроизвольного превращения металла в порошок».

Все усилия по поиску металлических материалов, устойчивых в активных водород- и углеродсодержащих газовых средах, до настоящего времени были сконцентрированы на формировании защитных оксидных слоев, которые, как известно, не растворяют углерод и, следовательно, препятствуют его проникновению в металл.

Техническим результатом изобретения является реализация задачи создания сплавов на основе железа, коррозионностойких в активных углеродсодержащих газовых средах при температурах 573-1173 К, за счет отсутствия появления в процессе эксплуатации нежелательных метастабильных карбидных фаз, приводящих к протеканию процесса самопроизвольного превращения металла в порошок.

Указанный технический результат достигается тем, что сплав на основе железа для изделий, работающих в активных углеродсодержащих газовых средах при температурах 573-1173 К, содержащий углерод, согласно изобретению, дополнительно содержит марганец, кремний и алюминий при следующем соотношении компонентов, мас.%: углерод 2, марганец 8-14, кремний 1,5, алюминий 0,08, железо и неизбежные примеси - остальное.

Принципиальная новизна предлагаемого технического решения состоит в том, что путем варьирования фазового состава сплава созданы условия, при которых в процессе эксплуатации в активных углеродсодержащих средах (в условиях постоянного науглероживания) не происходит появление нежелательных метастабильных карбидных фаз, приводящих к протеканию процесса самопроизвольного превращения металла в порошок (катастрофической карбюризации) или их образованию соответствует минимальная движущая сила.

Содержание марганца должно быть не менее 8 мас.%, а углерода не более 2 мас.% из-за необходимости предотвращения возможности образования нежелательных метастабильных карбидных фаз цементитного типа, приводящих к протеканию процесса самопроизвольного превращения металла в порошок. Содержание углерода более 2 мас.% и кремния более 1,5 мас.% также недопустимо из-за затруднительности получения необходимой пластичности материала, определяющей технологичность его применения. Содержание марганца более 14 мас.% и алюминия более 0,08 мас.% не рационально из-за удорожания материала. Повышенное содержание алюминия (более 0,08 мас.%) также недопустимо по причине дополнительного загрязнения стали неметаллическими включениями, существенно понижающего как технологические свойства жидкого металла, так и служебные характеристики получаемой металлопродукции.

Примеры реализации изобретения.

Из карбонильного железа (99,9%) и электролитического марганца (99,8%) в электродуговой печи с водоохлаждаемым медным поддоном и нерасходуемым вольфрамовым электродом были выплавлены сплавы, содержащие марганец в количестве 9,3, 10,2 и 11,5 мас.%, железо и неизбежные примеси - остальное. Полученные образцы помещали в специально созданный кварцевый реактор, в который можно подавать газовые смеси с определенным соотношением компонентов. Выдержку осуществляли при 873 К в течение 120 часов в токе газовой смеси СО и Н2 с общим давлением, равным атмосферному, и соотношением парциальных давлений (расходов) компонентов, равным 1, что соответствует максимальной активности углерода в газовой фазе. Последующий анализ сплавов показал отсутствие каких-либо следов коррозии, хотя зафиксировано отложение большого количества углерода не только на поверхности изученных образцов, но и на стенках кварцевого реактора.

Образец стали следующего химического состава: С - 1,14 мас.%, Mn - 13,3 мас.%, Si - 0,72 мас.%, Al - 0,052 мас.%, железо и неизбежные примеси - остальное, помещали в кварцевый реактор, в который подавали газовые смеси СО и Н2 с общим давлением, равным атмосферному, и соотношением парциальных давлений (расходов) компонентов, равным 1, что соответствует максимальной активности углерода в газовой фазе. Экспозицию осуществляли при 873 К в течение 120 часов. Последующий анализ образца стали показал отсутствие каких-либо следов коррозии, хотя зафиксировано отложение большого количества углерода не только на поверхности образца, но и на стенках кварцевого реактора.

Таким образом, использование настоящего изобретения позволяет получать материалы на основе железа, устойчивые к разрушению в активных углеродсодержащих газовых средах при температурах 573-1173 К.

Источники информации

1. Muller-Lorenz E.M, Grabke H.J. Cocking by metal dusting of steels. // Mater. Corros. 1999. V.50. P.614-621.

2. Grabke H.J. Metal Dusting of Low - and High-Alloys Steels. // Corros. 1995. v.51. N9, p.711-720.

3. Зайцев А.И. Самопроизвольное превращение в порошок металлических материалов в активных углеродсодержащих газовых средах. // Сталь. 2001. 12, с.60-64.

4. Гуляев А.П. Металловедение. М.: Металлургия, 1977, с.505.

5. Альшевский Ю.Л., Бакланова О.Н., Зайцев А.И., Мальцев В.В., Родионова И.Г., Рыбкин А.Н., Шапошников Н.Г. Термодинамический анализ равновесий в сплавах системы Fe-Cr-C для прогнозирования их устойчивости к разрушению в активных углеродсодержащих газовых средах. // Неорганические материалы, 2005, том 41, 2, с.177-184.

Кол-во просмотров: 16931
Яндекс.Метрика