Сегодня в мире успешно эксплуатируют десятки миллионов ТН различного назначения. Согласно данным Международного энергетического агентства (IEA), к 2020 г. в развитых странах доля отопления и горячего водоснабжения с помощью тепловых насосов должна составить 75%. Самые крупные из них эксплуатируются в государствах Скандинавии, в частности в Швеции. Наиболее мощный ТН установленной тепловой мощностью 320 МВт успешно работает в Стокгольме, используя в качестве низкотемпературного источника теплоту морской воды.
В странах Западной Европы стоимость тепловых насосов мощностью от 100 до 10000 кВт составляет 600–700 долл./кВт. По сравнению с традиционным теплоснабжением, снижение себестоимости производимого ими тепла составило от 1,5 до 2,5 раз. Срок окупаемости у большинства из ТН не превышает трех лет.
Опыт эксплуатации тепловых насосов в России показал: из-за большей продолжительности отопительного периода в нашей стране по сравнению, к примеру, с той же Западной Европой, а также из-за более острой проблемы транспорта топлива экономическая эффективность применения ТН в России больше, чем в других государствах.
Основными сдерживающими факторами их использования являются:
– высокая стоимость приобретения и установки;
– относительно дешевое и доступное углеводородное топливо.
Приведенные выше ограничения могут быть устранены посредством разработки и внедрения ТН с повышенным отопительным коэффициентом.
Принцип действия ТН основан на передаче тепла от холодного тела источника, к горячему. Такая передача возможна за счет дополнительной затраты энергии. Энергетическая эффективность работы ТН определяется отопительным коэффициентом (Ф):
Nэл – энергия, затраченная на работу насосов.
Среднее значение Ф существующих ТН колеблется от 3 до 7.
В термодинамическом цикле современных тепловых насосов величина Ф зависит только от температуры нагреваемой и охлаждаемой сред и не зависит от природы рабочего тела (газа). Опыты по получению повышенного значения Ф, проведенные на модели ТН, разработанной и запатентованной автором, показывают, что величина Ф зависит от природы используемого рабочего тела. Теоретическое обоснование этой работы доказывает возможность достижения Ф, близкого к 23.
Чтобы исключить разночтение, необходимо подчеркнуть: если предлагаемый тепловой насос потребляет 1 кВт электроэнергии, то к окончанию своей работы он произведет 23 кВт тепловой энергии.
При этом его принципиальная особенность заключается в следующем: рабочее тело ТН подбирается так, что критическая температура должна быть равна температуре охлаждаемой среды, и перед началом цикла рабочее тело должно иметь критические параметры. Термодинамический цикл ТН доступен численному описанию, причем каждая отдельная стадия цикла может быть подтверждена экспериментально, а его физические основы строго согласуются с законом сохранения и превращения энергии.
Рис.1.1. Идеальный газ, 2. Ван-дер-Ваалъса, 3. Автора (Конова) , 4. Ленарда-Джонса
Отношение площадей под этими кривыми равно 7,43. Данный факт говорит о том, что экономичность нового ТН в 7,43 раза выше, чем у традиционного ТН, работающего по диаграмме для идеального газа, где отопительный коэффициент равняется 3. Произведение 3×7,43 дает отопительный коэффициент, равный приблизительно 23.
Рис.2 Принципиальная схема ТН с
отопительным коэффициентом > 15 | Рис. 3 Лабораторный образец ТН с
отопительным коэффициентом > 15 |
Конструктивные особенности предлагаемых тепловых насосов – в отсутствии:
– традиционного компрессора (его роль выполняет более простой, дешевый и эффективный масляный насос высокого давления);
– отдельного детандера (сжатие и расширение теплоносителя происходят в теплообменной камере);
– проталкивания рабочего тела от испарителя к конденсатору;
– циркуляционного контура с рабочим телом;
– конденсатора и испарителя.
При этом за счет упрощения конструкции значительно уменьшается стоимость изготовления и в несколько раз сокращается срок окупаемости ТН. Все детали для тепловых насосов производятся промышленностью серийно, а в дальнейшем можно создать широкий диапазон их типоразмеров.