ВАЖНЫЕ НОВОСТИ
Парад городов-героев к 80-летию годовщины Великой Победы!

Колонна мощных, энергонасыщенных тракторов сегодня прошла марш-парадом по проспектам Санкт-Петербурга в честь 80-и летия Победы в Великой Отечественной войне! Двенадцать Кировцев К7М под управлением лучших испытателей сельскохозяйственной техники гордо несли имена городов-героев. Головной машиной управлял директор Петербургского тракторного завода Сергей Серебряков. Эти именные тракторы выйдут на ...

С Днём радио — праздником работников всех отраслей связи!

Москва, 7 мая 2025 года — Радио стало одним из ключевых изобретений, которое заложило основу для современных технологий, включая телевидение, мобильную связь и интернет. В этот день 130 лет назад выдающийся русский учёный-физик Александр Попов продемонстрировал созданный им радиоприемник и беспроводную передачу сигналов. Доступная и качественная связь сегодня — это базовая потребнос...

Цифромация.РФ: как ИИ и автоматизация помогут МСБ выжить и расти в 2025 году

15 мая 2025 года в Москве и онлайн состоится конференция «Цифромация.РФ 05.15.2025 — цифровая трансформация бизнеса» — практическое событие для малого и среднего бизнеса, предпринимателей и самозанятых. В центре внимания конференции — конкретные решения для ключевых проблем, с которыми ежедневно сталкиваются компании: Как сократить операционные расходы и найти скрытые резер...

Банк Ростеха НОВИКОМ подписал соглашение с Центральным банком Кубы о расчетах в рублях

Дочерний банк Госкорпорации Ростех заключил соглашения с Центральным банком Кубы и двумя крупнейшими коммерческими банками республики. Документы предусматривают организацию расчетов в рублях через счета в НОВИКОМе. Подписание состоялось на полях 22-го заседания Межправительственной Российско-Кубинской комиссии по торгово-экономическому и научно-техническому сотрудничеству в Гаване. Заключение с...

Фонд содействия инновациям совместно с Минпромторгом России открыл приём заявок на конкурс «Развитие-Станкостроение»

Конкурс стартовал в рамках национального проекта «Средства производства и автоматизации». «Правительство способствует максимальной локализации отечественных средств производства, а также комплектующих для них. Грантовая поддержка компаний, осуществляющих научные разработки в отрасли, позволяет существенно расширить номенклатуру станков, металлообрабатывающего и прессового оборудования, что, в с...

В Вене состоялось официальное открытие Центра промышленных компетенций БРИКС

9 апреля 2025 г. в штаб-квартире Организации Объединенных Наций по промышленному развитию (ЮНИДО) в Вене состоялось официальное открытие Центра промышленных компетенций БРИКС на базе ЮНИДО. Инициативу его создания выдвинула Россия в 2020 году во время своего председательства в БРИКС. На церемонии присутствовали генеральный директор ЮНИДО Герд Мюллер, заместитель Министра промышленности и торгов...

6 Июля 2010

Достижение наибольшего значения тяги двигателя самолета в режиме форсажа

Достижение наибольшего значения тяги двигателя самолета в режиме форсажа

Спocoб oтладки газoтурбиннoгo двигателя c фoрcажнoй камерoй

Изoбретение oтнocитcя к oблаcти авиациoннoй техники, бoлее кoнкретнo к cпocoбу отладки раcхода топлива в форcажную камеру cгорания газотурбинного двигателя cамолета. Споcоб отладки газотурбинного двигателя c форcажной камерой включает увеличение раcхода топлива воздейcтвием на раcход топлива в форcажную камеру и контроль изменения размеров проходного cечения реактивного сопла на форсажном режиме работы двигателя. При достижении площади проходного сечения максимального значения отладку прекращают. Техническим результатом является достижение максимального значения тяги на форсажном режиме. 3 ил.

Изобретение относится к области авиационной техники, а более точно касается отладки расхода топлива в форсажную камеру сгорания газотурбинного двигателя самолета.

Известен способ отладки газотурбинного двигателя с форсажной камерой путем измерения времени достижения давления топлива в форсажном коллекторе заданной величины, сравнения его с заданным и регулирования приемистости по результату сравнения. Для повышения эксплуатационной надежности путем повышения точности регулирования дополнительно перед измерением времени достижения давлением топлива в форсажном коллекторе заданной величины измеряют время до начала выдачи сигнала розжига форсажа, сравнивают его с заданным и по результату последнего дополнительно регулируют приемистость двигателя (авт св. СССР № 1245064, опубл. 1996.08.20).

Известен способ отладки газотурбинного двигателя с форсажной камерой, при котором измеряют расход воздуха на входе в двигатель, расходы топлива в основную и форсажную камеры сгорания, определяют по ним коэффициент избытка воздуха и за счет изменения расхода топлива в форсажную камеру добиваются обеспечения потребного значения коэффициента избытка воздуха.


Известный способ отладки расхода топлива в форсажную камеру ГТД исходит из условия обеспечения заданного значения коэффициента избытка воздуха   , где - расход воздуха, и - расход топлива соответственно в основной и форсажной камерах, L0 - расход воздуха, необходимого для полного сгорания 1 кг топлива (Ю.Н.Нечаев, P.M.Федоров. Теория авиационных газотурбинных двигателей. М.: Машиностроение, 1978, часть 2, стр.70).

Известный способ не позволяет достичь максимального значения тяги на форсажном режиме

Кроме того, для реализации этого способа необходимо замерить . Такие замеры реализованы при стендовых испытаниях ГТД при контрольно-сдаточных испытаниях. Однако в эксплуатации на самолете замерить эти параметры не представляется возможным, т.к. точность штатных самолетных расходомеров не достаточна для отладки  , а расход воздуха на самолете не замеряется.

В основу изобретения положена задача повышения эффективности работы газотурбинного двигателя самолета на форсажном режиме.

Техническим результатом является достижение при отладке максимального значения тяги на форсажном режиме. Отладку можно осуществлять на самолете в условиях эксплуатации.


Поставленная задача решается тем, что в способе отладки газотурбинного двигателя с форсажной камерой, включающем измерения размеров проходного сечения реактивного сопла и расхода топлива в форсажную камеру, на форсажном режиме работы двигателя увеличивают расход топлива воздействием на расход топлива в форсажную камеру и контролируют изменение размеров проходного сечения реактивного сопла и при достижении площади проходного сечения максимального значения отладку прекращают.

В дальнейшем изобретение поясняется описанием и чертежами, на которых представлены

фиг.1 - график зависимости температуры Тф от коэффициента избытка воздуха в форсажной камере турбореактивного двухконтурного двигателя;

фиг.2 - график зависимости площади Fг реактивного сопла от коэффициента избытка воздуха в форсажной камере того же турбореактивного двухконтурного двигателя;

фиг.3 - принципиальная схема устройства для реализации способа согласно изобретению.

Известно, что один и тот же режим турбокомпрессора может быть установлен при различных сочетаниях величин площади Fг реактивного сопла и расхода Gтф форсажного топлива (расхода Gтф топлива в форсажной камере). («Теория автоматического управления силовыми установками летательных аппаратов», под ред. А.А.Шевякова, М.: Машиностроение, 1976, стр.120.) Связь эта определяется уравнением , где «а» и «b» - постоянные величины для данного режима работы турбокомпрессора.

Таким образом, для сохранения заданного режима работы турбокомпрессора при изменении Gтф регулятор сопла автоматически установит Fг в соответствии с вышеприведенным уравнением.

Заданное значение коэффициента избытка воздуха определяется из условия обеспечения заданного значения тяги (R) на форсаже, определяемом температурой газа на срезе реактивного сопла в форсажной камере (Тф). При этом и Тф связаны зависимостью  где Тн - температура воздуха на входе в ГТД.

Математическим моделированием автором установлено, что изменение температуры Тф и площади Fг реактивного сопла от коэффициента избытка воздуха в форсажной камере имеет максимум. Характер изменения иллюстрируется графиком зависимости температуры Тф (фиг.1) и графиком зависимости площади Fг реактивного сопла (фиг.2) от коэффициента избытка воздуха за счет изменении Gтф в форсажной камере турбореактивного двухконтурного двигателя.

Как видно из графиков, значения Тф и Fг имеют максимум при =1, 12.

Это связано с тем, что при увеличении Gтф (уменьшении , т.е. при <1,12) существенно ухудшается процесс горения в форсажной камере сгорания - падает полнота сгорания и, как следствие, происходит падение Тф и Fг. Таким образом, увеличивая Gтф, по характеру изменения Fг можно судить об изменении Тф. Когда Fг достигнет своего максимального значения' (или близкого к нему), это будет означать, что температура в форсажной камере Тф достигла своего максимума, а значит, и тяга двигателя максимальна.


Способ может быть реализован устройством, показанным на фиг.3.

Газотурбинный двигатель 1 снабжен датчиком 2 перепада давления газов на турбине (∏т), датчиком 3 положения гидроцилиндров сопла, регулятором 4 управления гидроцилиндрами сопла, автоматом 5 подачи форсажного топлива с настроечным элементом 6.

На форсажном режиме за счет настроечного элемента 6 увеличивают расход топлива в форсажную камеру, формируемого автоматом 5. При этом регулятор 4 по сигналу датчика 2 будет автоматически увеличивать Fг для сохранения режима работы газотурбинного двигателя по (∏т).

Увеличение расхода осуществляют до тех пор, пока Fг перестанет увеличиваться. Это означает, что температура в форсажной камере Тф достигла максимума, а значит, и тяга двигателя на форсажном режиме будет максимальна.

При достижении Fг своего максимального значения, увеличение прекращают и отладка двигателя завершена.

Изобретение может быть использовано для отладки расхода топлива в форсажную камеру сгорания газотурбинного двигателя самолета, в том числе двухконтурного, в условиях эксплуатации самолета, например на летном поле.

Кол-во просмотров: 15215
Яндекс.Метрика