ВАЖНЫЕ НОВОСТИ
Ректор и сотрудники МИФИ удостоены наград Министерства обороны РФ

В Министерстве обороны Российской Федерации высоко оценили работу ректора и сотрудников НИЯУ МИФИ – сегодня им вручили заслуженные награды. Медалями Минобороны России «За помощь и милосердие» награждены ректор НИЯУ МИФИ Владимир Шевченко и начальник военного учебного центра университета Андрей Коростелев. Эта награда – признание их личных заслуг в оказании содействия военнослужащим,...

Помощник Президента РФ Николай Патрушев в рамках визита в Якутию оценил перспективы развития Жатайской судоверфи

В рамках рабочей поездки в Якутск помощник Президента РФ, председатель Морской коллегии РФ Николай Патрушев вместе с главой Республики Саха (Якутия) Айсеном Николаевым посетил Жатайскую судоверфь — ключевой объект для строительства судов, обеспечивающих перевозку жизненно важных грузов в рамках Северного завоза. Судоверфь, находящаяся на территории опережающего социально-экономического ра...

Увеличенная скидка на лёгкие коммерческие автомобили по программе льготного лизинга в 20% продлена до конца года

По поручению Первого вице-премьера Дениса Мантурова Минпромторг России возобновил действие увеличенной скидки на лёгкие коммерческие автомобили (ранее была введена на период с 8 сентября до 1 октября). Она продлена до конца 2025 года. Напомним, в сентябре в качестве одной из антикризисных мер, направленных на поддержание темпов обновления парков лёгкого коммерческого транспорта, скидка на таки...

Минпромторг : Для рыбной отрасли сдали 46 судов по заключенным с 2018 года контрактам

Договоры на строительство 65 рыбопромысловых судов и 42 краболов заключены с 2018 года, из них сданы уже 46 судов. Об этом сообщил глава Минпромторга РФ Антон Алиханов на правительственном часе в Госдуме. Практически все новые суда у нас строятся с мерами господдержки, особенно востребован механизм квот под киль. С 2018 года заключены договоры на строительство 65 рыбопромысловых судов, 42 крабо...

«НПК ОВК» готова к обновлению вагонного парка России, но для этого нужны системные меры господдержки

На расширенном заседании Комитета по транспорту Торгово-промышленной палаты РФ, прошедшем в преддверии выставки «Транспорт России», обсуждалась актуализация Транспортной стратегии страны. В ходе мероприятия с докладом о критической ситуации в вагоностроительной отрасли выступил коммерческий директор ПАО «НПК Объединенная Вагонная Компания» (ОВК) Павел Ефимов. Ефимов указал на резкое сокращение ...

Правительство РФ актуализировало ставки таможенных сборов на ввозимые товары

Актуализация ставок таможенных сборов осуществляется с учетом уровня накопленной инфляции в рамках обязательств Российской Федерации во Всемирной торговой организации. По мнению ведомства, их значения должны быть сопоставимы с затратами на проведение таможенных операций. Изменения вступят в силу с 1 января 2026 года, чтобы участники внешнеторговой деятельности смогли адаптироваться к новым условия...

18 Августа 2010

Повышение эффективности получения водорода при отсутствии внешнего источника электроэнергии

Повышение эффективности получения водорода при отсутствии внешнего источника электроэнергии

Уcтанoвка для пoлучения вoдoрoда термoхимичеcким разлoжением вoды
Автoры:
Фoкин Юрий Иocифoвич
Янченкo Виктoр Степанoвич

Изoбретение oтнocитcя к oбoрудованию для реализации cпоcобов получения водорода термохимичеcким разложением воды и может быть иcпользовано для обеcпечения водородным топливом энергетичеcких уcтановок, а также для получения водорода для технологичеcкого иcпользования. Уcтановка для получения водорода термохимичеcким разложением воды cодержит бункеры c иcходными компонентами, емкоcть для воды, емкость для хранения водорода, емкость для хранения кислорода, нагреватель для обеспечения температурных режимов термохимических циклов и соединенный с ним теплопроводами внешний источник тепла, а также реактор окисления и реактор восстановления, связанные между собой системой транспортирования исходных компонентов, промежуточных продуктов термохимических циклов и готового продукта с запорно-регулирующей арматурой. При этом она снабжена блоком питания, управления и регулирования, а также электрохимическим генератором, включающим батарею топливных элементов, систему терморегулирования и блок инвертирования и трансформации электрического тока и соединенным трубопроводами с емкостями для хранения водорода и кислорода и питающим электроэнергией агрегаты установки через блок инвертирования и трансформации и блок питания, управления и регулирования с использованием проводов и разъемов. Технический результат заключается в повышении экономической эффективности получения водорода благодаря снижению энергоемкости за счет отказа от внешнего источника энергии.

Изобретение относится к химической технологии и энергетике, в частности к оборудованию для реализации способов получения водорода термохимическим разложением воды, и может быть использовано, например, для обеспечения водородным топливом энергетических установок с тепловыми двигателями или с электрохимическими генераторами на топливных элементах, а также для получения водорода для технологического использования.

Известны различные способы получения водорода термохимическим разложением воды. Так, например, ученые итальянского исследовательского центра в Испре провели исследования процесса термохимического разложения воды под названием MARCK-1 (система Br-Ha-Ca-O-H), который в 1970 г. был запатентован в Европе руководителем группы Ж. Де-Бени [1]. Установка для получения водорода по этому процессу включает четыре реактора с соответствующими температурными режимами, не превышающими 650-780°С, колонку концентрирования и два сепаратора. Процесс основан на использовании бромистортутных систем и обеспечивается теплоносителем, нагретым в атомном реакторе.

К недостаткам данного процесса относятся: сложность технологической схемы и самой установки, проблемы экологической безопасности в связи с использованием атомного реактора и ртутных соединений.

Известен также способ получения водорода с помощью неактивированных металлов и водяного пара при повышенных температурах. В частности, при использовании железопарового метода установка содержит бункеры с порошкообразным железом и порошком графита, емкость с водой и угарным газом, теплогенератор для обеспечения необходимых температурных режимов термохимических процессов. Установка содержит также соединенные с теплогенератором реактор окисления железа, а также реактор восстановления окиси и закиси железа, соединенные между собой системой транспортирования исходных компонентов, промежуточных продуктов термохимических реакций и готового продукта - водорода, причем транспортные магистрали снабжены запорно-регулирующей аппаратурой [2].

Процесс характеризуется повышенными температурами от 538 до 1427°С и недостаточной эффективностью в связи с плохим перемешиванием твердых частиц на стадии регенерации.

К недостаткам процесса и самой установки следует отнести: высокую энергоемкость процесса, сложность установки, трудность реализации экологически чистого процесса.

Наиболее близкой к предлагаемой является установка для получения водорода термохимическим разложением воды при осуществлении замкнутого цикла в присутствии в качестве исходного компонента азотистокислых солей (нитритов) щелочных металлов переходной группы и в качестве катализатора йода I2 с регенерацией исходных компонентов [3]. В ходе процесса кроме водорода вырабатывается также кислород.

К недостаткам установки следует отнести необходимость наличия внешнего источника электрической энергии как для питания теплогенератора индукционного типа, так и для подключения других агрегатов установки: насосов, шнековых питателей, вибраторов, элементов запорно-регулирующей арматуры и других. При этом затраты электроэнергии на разложение йодистого водорода на водород и йод в теплогенераторе с рабочей температурой 450°С делают малоэффективным дальнейшее использование водорода в качестве топлива в электрогенерирующих установках, например, с использованием ДВС.

Целью изобретения является повышение экономической эффективности получения водорода благодаря снижению энергоемкости за счет применения электрохимического генератора на топливных элементах, работающего на продуктах осуществляемого процесса, что позволяет отказаться от внешнего источника электроэнергии.

Как известно, топливные элементы имеют самый высокий энергетический КПД [4]. Система терморегулирования электрохимического генератора подключена к тепловой системе установки получения водорода, что позволяет достичь большей степени регенерации тепла. При этом для осуществления процесса используется возобновляемый источник тепловой энергии, например солнечной или геотермальной.

Указанная задача достигается тем, что установка для получения водорода термохимическим разложением воды, содержащая бункеры с исходными компонентами, емкость для воды, емкость для хранения водорода, емкость для хранения кислорода, нагреватель для обеспечения температурных режимов термохимических циклов и соединенный с ним теплопроводами внешний источник тепла, а также реактор окисления и реактор восстановления, связанные между собой системой транспортирования исходных компонентов, промежуточных продуктов термохимических циклов и готового продукта с запорно-регулирующей арматурой, отличается тем, что она снабжена блоком питания, управления и регулирования, а также электрохимическим генератором, включающим батарею топливных элементов, систему терморегулирования и блок инвертирования и трансформации электрического тока и соединенным трубопроводами с емкостями для хранения водорода и кислорода и питающим электроэнергией агрегаты установки через блок инвертирования и трансформации и блок питания, управления и регулирования с использованием проводов и разъемов. Батарея топливных элементов соединена трубопроводом с емкостью для воды, по которому вода, образующаяся в результате реакции в топливных элементах, возвращается в установку для повторного использования. Система терморегулирования батареи топливных элементов связана трубопроводами с нагревателем.

Дополнительными результатами являются также повышение экологичности процесса за счет использования возобновляемого источника тепловой энергии и применения водородно-кислородных топливных элементов, выделяющих в окружающую среду только воду.

Установка для получения водорода термохимическим способом с применением топливных элементов содержит собственно установку для получения водорода (УПВ) 1, батарею топливных элементов (БТЭ) 2, блок питания, управления и регулирования установки получения водорода (БПУР) 3, систему терморегулирования батареи топливных элементов (СТР) 4, блок инвертирования и трансформации электрического тока (БИТ) 5. Необходимая для процесса вода находится в резервуаре 6 и подается в установку насосом 7. Сухие компоненты (нитрит натрия и йод) находятся в бункерах 8 и подаются в установку шнеками 9. Для циркуляции жидкой фазы в реакторе окисления газожидкостного типа 10 применяется насос 11. В реакторе окисления в результате происходящих химический реакций образуются газообразный йодистый водород и раствор нитрата натрия. Тепло Q от внешнего источника подается в нагреватель 12 по теплопроводу (не показан). При нагревании происходит разложение йодистого водорода на газообразные водород и йод. В верхней выпарной колонне 14 реактора восстановления происходит выпаривание раствора нитрата натрия, в нижней колонне 15 при подводе тепла порошкообразный нитрат натрия разлагается на нитрит натрия и кислород. После восстановления исходные вещества (жидкий йод, порошкообразный нитрит натрия, вода) опять поступают в реактор окисления 10. Получившиеся газообразные водород и кислород отводятся из установки. Для интенсификации технологических процессов в реакторе окисления установлено перемешивающее устройство 13, а в колоннах реактора восстановления 14 и 15 установлены вибраторы (не показаны). Батарея топливных элементов связана с установкой получения водорода трубопроводами для подачи водорода 16 и кислорода 17, а с резервуаром воды трубопроводом 18. Система терморегулирования батареи топливных элементов 4 связана с установкой получения водорода трубопроводами 19.

Установка работает следующим образом.

В результате работы установки получения водорода 1 вырабатывается водород Н2 и кислород О2, которые накапливаются в соответствующих емкостях (не показаны). Необходимое количество этих газов по трубопроводам 16, 17 подается в батарею топливных элементов 2, в которой в результате химической реакции окисления водорода кислородом происходит прямое преобразование химической энергии топлива в электрическую - вырабатывается постоянный электрический ток. Он преобразуется в блоке инвертирования и трансформации 5 до необходимого напряжения и частоты и через разъемы 20-21 подается в блок питания, управления и регулирования 3. Этот блок осуществляет электропитание вибраторов реактора восстановления 14, 15 через разъемы 22-23 и 24-25 перемешивающего устройства 13 реактора окисления 10 через разъемы 26-27, насоса 11 через разъем 28-29, шнеков твердых компонентов через разъемы 30-31 и 32-33, водяного насоса 7 через разъем 34-35 и других потребителей электроэнергии. Часть электроэнергии используется также для осуществления управления и регулирования установки. Вода, образующаяся в батарее топливных элементов 2, по трубопроводу 18 подается в резервуар 6. Система терморегулирования 4 батареи топливных элементов, подавая теплоноситель по трубопроводам 19, осуществляет регенерацию тепла в тепловых устройствах установки получения водорода, что особенно эффективно при использовании среднетемпературных и высокотемпературных топливных элементов и повышает КПД системы в целом.

Предлагаемая установка не нуждается в дополнительном источнике электроэнергии, благодаря чему упрощается ее эксплуатация и увеличивается автономность, повышается энергосбережение за счет высокого КПД топливных элементов и использования выделяемого в них тепла в аппаратах УПВ, повышается экологическая эффективность за счет отсутствия выбросов в окружающую среду и использования возобновляемых источников тепловой энергии.

Кол-во просмотров: 16242
Яндекс.Метрика