ВАЖНЫЕ НОВОСТИ
Немецкий бизнес инвестировал в Москву 7,8 млрд долларов

"Сегодня Германия остается одним из крупнейших иностранных инвесторов Москвы: по данным Центробанка на 1 апреля 2021 года накопленные прямые инвестиции Федеративной Республики в Москве достигли 7,8 миллиарда долларов США. За год их объем увеличился примерно на 0,4 миллиарда долларов. Растет и товарооборот между Москвой и Германией: в январе–августе 2021 года он составил 19,9 миллиарда доллар...

Египту представили российские IТ-решения

Российские ИКТ-компании приняли участие в бизнес-миссии в Арабскую Республику Египет для представления отечественных высокотехнологичных решений в области производства телеком-оборудования, кибербезопасности, стриминговых сервисов. Делегацию возглавил замглавы Минцифры России Максим Паршин. В состав делегации вошел генеральный директор компании «РусХайтекЭкспорт» Константин Носков, экс-министр циф...

Атомный ледокол «Сибирь» проекта 22220 вышел на ходовые испытания

Первый серийный атомный ледокол проекта 22220 «Сибирь» покинул достроечную набережную Балтийского завода (входит в состав ОСК) и взял курс на Финский залив, где приступит к выполнению программы заводских ходовых испытаний. Ближайшие три недели сдаточная команда Балтийского завода совместно с представителями контрагентских организаций будет проверять работу механизмов и оборудования ледокола. Сп...

Товарооборот между Дальним Востоком России и ОАЭ в 2021 году вырос в 2 раза

X юбилейное заседание Межправительственной Российско-Эмиратской комиссии по торговому, экономическому и техническому сотрудничеству состоялось в Дубае. Сопредседателями выступили министр промышленности и торговли РФ Денис Мантуров и министр экономики ОАЭ Абдалла Бен Тук Аль-Марри. В рамках заседания динамику экономических отношений Объединенных Арабских Эмиратов и Дальнего Востока России предст...

Изменился график проведения выставки «Металл-Экспо»

Указом Мэра Москвы от 21 октября 2021 г. в Москве установлены нерабочие дни с 28 октября по 7 ноября 2021 г. включительно. В частности, приостановлен доступ посетителей и работников в здания и на территории, в которых осуществляется оказание услуг по непосредственному проведению выставочных мероприятий. С 21 по 28 октября дирекцией и оргкомитетом выставки «Металл-Экспо» проводилась активная раб...

За год в Арктике стартовали более двухсот новых проектов на сотни миллиардов рублей

Год назад, 26 октября 2020 года, Президент России Владимир Путин утвердил своим указом Стратегию развития Арктической зоны Российской Федерации. По данным Корпорации развития Дальнего Востока и Арктики, за это время количество резидентов созданных в Арктике уникальных преференциальных режимов – территории опережающего развития «Столица Арктики» и АЗРФ - возросло до 250 компаний. Объем новых ...

22 Декабря 2009

Автономный источник энергии

Автономный источник энергии


Автoры: Загрядцкий Владимир Иванoвич, Ветрoв Алекcандр Олегoвич, Симoн Макcим Иванoвич

Изoбретение oтнocитcя к oтраcлям электрoтехники, теплoтехники, машинocтрoения, в кoтoрых ocущеcтвляетcя coвмеcтнoе прoизводcтво электричеcкой и тепловой энергии, в чаcтноcти к беcконтактным электричеcким cинхронным генераторам. Соглаcно изобретению автономный иcточник энергии, в котором осуществляется совместное производство электрической и тепловой энергии содержит бесконтактный электрический синхронный генератор. Статор отделяется от индуктора гильзой, которая совместно с корпусом и боковыми цилиндрическими пластинами образует герметическую полость, заполненную теплоотбирающей жидкостью. Полость имеет входной и выходной патрубки для подачи и отбора теплоотбирающей жидкости, которая приводится в движение циркуляционным насосом, расположенным на одном валу с генератором. Магнитопровод синхронного генератора выполнен из отдельных ферромагнитных пакетов, отделенных друг от друга радиальными каналами, в которых помещены дистанционные распорки с цилиндрическими направляющими ребрами, предназначенных для направленного кругового движения теплоотбирающей жидкости и усиления теплопередачи теплоизлучающих поверхностей ферромагнитных пакетов и обмоток электрического генератора. Тепловой режим автономного источника энергии поддерживается системой автоматического управления. Техническим результатом является повышение коэффициента полезного действия, упрощение конструкции и утилизации теплоты, уменьшение массы и габаритных размеров, получение более качественного отбора тепловой энергии. 2 ил.


Изобретение относится к отраслям электротехники, теплотехники, машиностроения, в которых осуществляется совместное производство электрической и тепловой энергии.


Сущность изобретения заключается в следующем. Автономный источник энергии содержит бесконтактный электрический синхронный генератор с возбуждением от постоянных магнитов. Магнитопровод статора состоит из отдельных пакетов, отделенных друг от друга дистанционными распорками с концентрическими направляющими ребрами для осуществления направленного кругового движения теплоотбирающей жидкости, и содержит тонкостенную немагнитную гильзу, жестко опирающуюся на рабочую поверхность пакетов статора и образующую вместе с корпусом генератора герметичную полость, заполненную диэлектрической теплоотбирающей жидкостью, которая приводится в движение циркуляционным насосом, расположенным на одном валу с генератором. Технический результат заключается в использовании для нагрева теплоотбирающей жидкости тепло, выделяемое вихревыми токами в пакетах магнитопровода статора, и тепло, выделяемое проводниками обмотки статора.
Изобретение относится к области электротехники, в частности к электромашиностроению - бесконтактным электрическим синхронным генераторам.


Наиболее близким устройством по выполняемым функциям является автономный источник энергии [1], позволяющий одновременно получить электрическую и тепловую энергии. В источнике энергии, содержащем бесконтактный электрический синхронный генератор, имеется электромеханический нагреватель, представляющий собой синхронную электрическую машину, вал которой механически соединен с валом бесконтактного электрического синхронного генератора. Недостатком такой совокупной машины (генератор - электромеханический нагреватель) является уменьшенный коэффициент полезного действия (КПД), который равен произведению значения коэффициента полезного действия бесконтактного электрического синхронного генератора и коэффициента полезного действия электромеханического нагревателя - который, как следствие, меньше коэффициента полезного действия двух отдельных машин. К тому же наличие в одной системе двух электрических машин усложняет и утяжеляет в целом конструкцию автономного источника энергии, увеличивает ее осевые размеры. Отсутствует утилизация теплоты, выделяемой бесконтактным электрическим синхронным генератором.


Заявленное изобретение позволяет решить задачу повышения коэффициента полезного действия (КПД) автономного источника энергии за счет упрощения конструкции и утилизации теплоты, выделяемой при работе бесконтактного электрического синхронного генератора, уменьшения массы и габаритных размеров и получения более качественного отбора тепловой энергии.


Решение технической задачи достигается за счет того, что автономный источник энергии для совместной выработки тепловой и электрической энергии содержит бесконтактный синхронный электрический генератор с бесконтактным возбуждением, электрическую и тепловую сети, запорно-регулирующую аппаратуру, систему автоматического управления, теплообменники, циркуляционный насос, отличающийся тем, что магнитопровод статора генератора выполнен из отдельных ферромагнитных пакетов и отделен от индуктора тонкостенной гильзой, опирающуюся на рабочую поверхность магнитопровода и, образующую, с корпусом электрического генератора и боковыми цилиндрическими пластинами, герметичную полость, снабженную радиальными каналами, которые делят полость на отдельные части, заполненные теплоотбирающей жидкостью, эта полость имеет входной и выходной патрубки для подачи и отбора теплоотбирающей жидкости, а магнитопровод статора бесконтактного электрического синхронного генератора выполнен из отдельных ферромагнитных пакетов, отделенных друг от друга радиальными каналами, в которых помещены дистанционные распорки с цилиндрическими направляющими ребрами, предназначенных для направленного кругового движения теплоотбирающей жидкости и усиления теплопередачи теплоизлучающих поверхностей ферромагнитных пакетов и обмоток электрического генератора.

На фиг.1 показан общий вид предлагаемого автономного источника энергии.

На фиг.2 приведена принципиальная схема получения электрической и тепловой энергии.

Бесконтактный синхронный электрический генератор с приводом, например от дизеля, содержит корпус 1, в котором неподвижно закреплен магнитопровод статора с трехфазной обмоткой 2. Магнитопровод выполнен из отдельных ферромагнитных пакетов 3, отделенных друг от друга радиальными каналами 4, в которых помещены дистанционные распорки. Дистанционные распорки выполнены в виде тонкого листа, прикрепленного к крайнему листу пакета точечной сваркой и имеют кольцевые ребра 5. Ребра выполняют функции разделения потока жидкости на отдельные струи с целью лучшей теплоотдачи. На дистанционной распорке размещается разделительно-направляющее устройство 6, которое выполнено в виде изогнутых по плавной кривой пластин и служит для создания круговой циркуляции теплоотбирающей жидкости по каналам 4. В бесконтактном синхронном электрическом генераторе предусмотрены входящий 7 и выходящий 8 патрубки по числу вентиляционных каналов между пакетами магнитопровода. Бесконтактный синхронный электрический генератор снабжен тонкостенной гильзой 9, опирающейся на рабочую поверхность пакетов 3 и на цилиндрическую поверхность кольцевых стенок 10 и образующую вместе с кольцевыми стенками 10, корпусом 1, патрубками 7 и 8 герметичную, заполненную теплоотбирающей жидкостью, полость. На конце вала бесконтактного электрического синхронного генератора противоположно концу вала генератора, соединяемого с приводным двигателем, расположен циркуляционный насос 15. Полость вместе с трубопроводами и циркуляционным насосом образует контур отвода тепла, получаемого от потерь в стали пакетов магнитопровода и меди обмотки статора бесконтактного электрического синхронного генератора. Бесконтактный электрический синхронный генератор снабжен щитами 11, подшипниковыми углами 12.
Охлаждающая система автономного источника энергии содержит два контура. Первый контур содержит насос 15, расположенный на валу электрического синхронного генератора, теплообменник 16, термостат 17. Второй контур содержит насос 15, термостат 17, теплообменник 16, нагреватель 18, находящийся в резервном баке горячей воды 19. Вторичный контур теплообменника содержит датчик расхода воды 20, датчик температуры воды 21, потребителя горячей воды. Вентиль 22, предназначенный для поддержки теплового диапазона потребителя, подпитывает потребитель горячей водой через смеситель 23. Вентиль 22 управляется блоком автоматического управления 26. Вентиль 24 служит для пополнения водой резервного бака и также управляется блоком автоматического управления 26.
Автономный источник энергии работает следующим образом. При вращении приводным двигателем вала 14 бесконтактного синхронного электрического генератора происходит преобразование механической энергии в электрическую в результате пересечения витков трехфазной силовой обмотки 2 магнитным полем, создаваемым постоянными магнитами индуктора 13. На зажимах статорной обмотки 2 бесконтактного электрического синхронного генератора получаем электрическое напряжение, передаваемое потребителю через выключатель 25.
В процессе преобразования механической энергии в электрическую в бесконтактном электрическом синхронном генераторе образуются потери. Они складываются из потерь в пакетах 3 магнитопровода статора за счет индуцируемых вихревых токов (токи Фуко и потери на гистерезис) и электрических потерь в статорной обмотке. Потери вызывают нагрев бесконтактного электрического синхронного генератора.
При вращении вала генератора 14 приходит во вращение и соединенный с этим валом вал циркуляционного насоса 15, который осуществляет циркуляцию жидкости в вертикальных каналах 4 бесконтактного электрического синхронного генератора, отбирая тепло у его тепловыделяющих элементов.
Система циркуляции жидкости состоит из двух контуров. В первом контуре горячая жидкость через теплообменник 16 поступает в термостат 17 и под действием насоса 15 возвращается в бесконтактный электрический синхронный генератор. Эта жидкость передает тепло теплообменнику 16, вследствие чего во втором контуре теплообменника нагревается холодная вода, поступающая через вентиль холодной воды 27. Нагретая вода поступает к потребителю горячей воды. В случае отсутствия расхода воды у потребителя и увеличения нагрева жидкости срабатывает термостат 23 и жидкость начинает циркулировать по второму контуру, включающий нагревательный элемент 18 резервного котла 19, что приводит к нагреву воды в баке. При возникновении расхода воды блок автоматического управления 26 открывает вентиль 22 и теплая вода из резервного бака 19 через смеситель 23 поступает потребителю горячей воды. Для пополнения расхода воды в баке 19 блоком автоматического управления 16 открывается вентиль 24.
Заявляемое изобретение отличается от прототипа тем, что в нем отсутствует вращающийся электромеханический нагреватель, что позволяет упростить автономный источник энергии, снизить его габариты, массу и повысить коэффициент полезного действия.
Возможен вариант автономного источника энергии, когда на валу электрического синхронного генератора расположено несколько циркуляционных насосов, система охлаждения состоит из отдельных изолированных полостей, движение охлаждающей жидкости в которых осуществляется отдельным насосом.

Источники информации

1. Патент Российской Федерации 2208893 C1, 7H02К 19/16, 9/19, 19/38. Автономный источник энергии / Терещук B.C., Иванов А.В., Костин А.Н. 20.07.2003. Бюл. 20.

Кол-во просмотров: 9790
На правах рекламы