ВАЖНЫЕ НОВОСТИ
ГК "Интратул": крупные заказчики поддержали тренд на собственное производство запчастей

Директор департамента развития производственных активов Группы компаний "Интратул" Андрей Владимирович Крайнов рассказал о ключевых проектах, модернизации мощностей, создании производств "под ключ", технологической независимости, сервисном и постгарантийном обслуживании, а также о работе с зарубежными и российскими партнерами. – Андрей Владимирович, назовите наиболее значимые проекты, реа...

Ростсельмаш расширяет горизонты возможностей и предлагает выгодные условия!

Ростсельмаш объявляет о старте приема заказов на тракторы 2000-й серии с валом отбора мощности (ВОМ). С мая 2025 года тракторы с ВОМ будут отгружаться с площадки производителя, значительно расширяя функциональность техники. Внедрение опции ВОМ открывает перед аграриями широкий спектр возможностей для агрегатирования различного оборудования, привод которого осуществляется от ВОМ. Теперь с тракто...

Парад городов-героев к 80-летию годовщины Великой Победы!

Колонна мощных, энергонасыщенных тракторов сегодня прошла марш-парадом по проспектам Санкт-Петербурга в честь 80-и летия Победы в Великой Отечественной войне! Двенадцать Кировцев К7М под управлением лучших испытателей сельскохозяйственной техники гордо несли имена городов-героев. Головной машиной управлял директор Петербургского тракторного завода Сергей Серебряков. Эти именные тракторы выйдут на ...

С Днём радио — праздником работников всех отраслей связи!

Москва, 7 мая 2025 года — Радио стало одним из ключевых изобретений, которое заложило основу для современных технологий, включая телевидение, мобильную связь и интернет. В этот день 130 лет назад выдающийся русский учёный-физик Александр Попов продемонстрировал созданный им радиоприемник и беспроводную передачу сигналов. Доступная и качественная связь сегодня — это базовая потребнос...

Цифромация.РФ: как ИИ и автоматизация помогут МСБ выжить и расти в 2025 году

15 мая 2025 года в Москве и онлайн состоится конференция «Цифромация.РФ 05.15.2025 — цифровая трансформация бизнеса» — практическое событие для малого и среднего бизнеса, предпринимателей и самозанятых. В центре внимания конференции — конкретные решения для ключевых проблем, с которыми ежедневно сталкиваются компании: Как сократить операционные расходы и найти скрытые резер...

Банк Ростеха НОВИКОМ подписал соглашение с Центральным банком Кубы о расчетах в рублях

Дочерний банк Госкорпорации Ростех заключил соглашения с Центральным банком Кубы и двумя крупнейшими коммерческими банками республики. Документы предусматривают организацию расчетов в рублях через счета в НОВИКОМе. Подписание состоялось на полях 22-го заседания Межправительственной Российско-Кубинской комиссии по торгово-экономическому и научно-техническому сотрудничеству в Гаване. Заключение с...

18 Декабря 2009

Электронно-лучевая пушка с плазменным источником электронов

Электронно-лучевая пушка с плазменным источником электронов


Автoры: Пoрубoв Анатoлий Иванoвич, Петрoв Андрей Никoлаевич, Жирнoв Анатoлий Трoфимoвич, Лузин Алекcандр Михайлoвич, Юрин Петр Михайлoвич

Изoбретение oтнocитcя к электрoннo-лучевым уcтрoйcтвам и мoжет быть иcпользовано для электронно-лучевой cварки (ЭЛС) изделий в вакууме. Электронно-лучевая пушка c плазменным иcточником электронов cодержит разрядную камеру c размещенным в ней, по крайней мере, одним поcтоянным магнитом, уcкоряющий электрод, эмиттерный катод c эмиccионным каналом и фокуcирующую катушку, при этом разноименные магнитные полюcа поcтоянного магнита, размещенного в разрядной камере, и фокуcирующей катушки расположены напротив друг друга с образованием между разрядной камерой и фокусирующей катушкой общей магнитной системы, направление силовых линий магнитного поля которой совпадает с направлением потока электронов электронного луча, величина магнитной индукции магнитного поля образованной магнитной системы на оси разноименных полюсов составляет не менее 0,02Т, а смещение оси канала эмиттерного катода от оси фокусирующей катушки составляет до половины диаметра канала. Технический результат - упрощение настройки, повышение стабильности работы пушки и уменьшение ее габаритов. 1 з.п. ф-лы, 2 ил.
В настоящее время в промышленности для ЭЛС используются пушки с плазменным источником электронов на основе плазменного газового разряда Пеннинга. Газовый разряд в такой пушке горит в специальной разрядной камере в условиях наличия неоднородного магнитного поля, которое создается размещенными в ней постоянными магнитами.
Известна электронная пушка с плазменным источником электронов, содержащая разрядную камеру, состоящую из полого катода, анода, эмиттерного катода, фокусирующую и отклоняющую системы (Белюк С.И. и др. Энергоблок для электронно-лучевой сварочной установки, содержащий пушку с плазменным эмиттером. - Автоматическая сварка, 1988, 11, стр.72-74).
Недостатком такой пушки является большая зависимость стабильного положения электронного луча в процессе работы от точности изготовления, сборки и настройки пушки.
Несоосность расположения эмиссионного канала эмиттерного катода и фокусирующей системы, изменение тока луча в процессе работы вызывает смещение луча от первоначально выбранной точки его наведения, что приводит к некачественной сварке. Поэтому для обеспечения стабильного положения электронного луча при работе независимо от величины тока каждый раз после проведения профилактических работ со снятием пушки с установки проводится специальная ее юстировка - настройка, обеспечивающая получение общей для всей пушки оптической оси. Это требует дополнительных временных затрат на ее настройку и проверку.
Наиболее близкой по сущности и достигаемому эффекту к заявляемой является электронная пушка с плазменным источником, содержащая разрядную камеру с размещенным в ней постоянным магнитом, эмиттерный катод с эмиссионным каналом, ускоряющий электрод и фокусирующую электромагнитную линзу (катушку) (Завьялов М.А. и др. Плазменные процессы в технологических электронных пушках. М.: Энергоатомиздат, 1989, с.63-64, рис.3.14(a) - прототип).
Недостатком известного решения является то, что для первичного формирования электронного луча на участке между эмиттерным катодом и ускоряющим электродом используется только ускоряющее высокое напряжение, которое лишь способствует уменьшению сечения луча и плотности потока электронов, но не влияет на траекторию движения луча. Поэтому первично сформированный электронный луч до попадания под воздействие магнитного поля фокусирующей линзы (катушки) имеет направление, определяемое положением оси эмиссионного канала. В результате при несоосности эмиссионного канала с фокусирующей катушкой и изменении величины тока луча в процессе работы пушки происходит смещение луча от первоначальной точки его наведения, что требует участия оператора в процессе сварки и может стать причиной некачественной сварки. Для устранения этого требуется тщательная настройка пушки, заключающаяся в совмещении осей эмиссионного канала и фокусирующей катушки. Операция эта трудоемка и требует персонала высокой квалификации.
Технической задачей изобретения является снижение затрат на настройку электронно-лучевой пушки за счет упрощения настройки и повышение стабильности работы пушки без изменения ее габаритов.
Решение технической задачи достигается тем, что в известной электронно-лучевой пушке с плазменным источником электронов, содержащей разрядную камеру с размещенным в ней, по крайней мере, одним постоянным магнитом, ускоряющий электрод, эмиттерный катод с эмиссионным каналом и фокусирующую катушку, согласно изобретению постоянный магнит, размещенный в разрядной камере, и фокусирующая катушка обращены друг к другу разноименными магнитными полюсами и образуют между собой общую магнитную систему, направление силовых линий магнитного поля в которой совпадает с направлением потока электронов, при этом величина магнитной индукции магнитного поля на оси противоположных полюсов образованной магнитной системы составляет не менее 0,02Т, а смещение оси канала эмиттерного катода от оси фокусирующей катушки составляет до половины диаметра канала.
Представленная совокупность признаков является новой, обладает изобретательским уровнем и решает поставленную задачу, так как наличие между разрядной камерой и фокусирующей катушкой общей магнитной системы с направлением силовых линий магнитного поля, совпадающим с направлением потока электронов, обеспечивает движение электронов вдоль этих линий, что снижает зависимость положения электронного луча от точности изготовления, сборки электронно-лучевой пушки и повышает надежность ее работы, что положительно сказывается на качестве продукции. Возможность получения такого поля обеспечивается, когда постоянный магнит, размещенный в разрядной камере, и фокусирующая катушка обращены друг к другу разноименными магнитными полюсами. Поставленная задача обеспечивается также тем, что величина магнитной индукции магнитного поля в промежутке между разрядной камерой и фокусирующей катушкой составляет не менее 0,02Т, что оказывается достаточным для совмещения электронного луча с осью фокусирующей катушки при наличии смещения оси эмиссионного канала до половины его диаметра от оси фокусирующей катушки.
В результате упрощается настройка пушки, повышается стабильность ее работы, что положительно сказывается на качестве сварки. Сущность изобретения поясняется чертежами.
На фиг 1. схематично представлена предлагаемая электронно-лучевая пушка.
На фиг.2 показано изменение величины магнитной индукции магнитного поля системы, образованной между центром фокусирующей катушки и эмиссионным каналом эмиттерного катода.
В состав электронно-лучевой пушки входит разрядная камера 1, образованная полым катодом 2, анодом 3, эмиттерным катодом 4 с эмиссионным каналом 5, фокусирующая катушка 6 и отклоняющая система 7 электронного луча 8. В разрядной камере находятся постоянные магниты 9. Направление силовых линий 10 магнитной системы показано стрелками (В), направление движение электронов - е.
Предлагаемая электронная пушка работает следующим образом.
Эмиттирующая плазма генерируется в разрядной камере 1, в состав которой входит полый катод 2, анод 3, эмиттерный катод 4 с эмиссионным каналом 5. При образовании в разрядной камере плазмы магнитное поле магнитов 9 сжимает разряд до размеров столба, соизмеримого по размеру с диаметром отверстия эмиссионного канала 5. Так как индукция магнита достаточна велика, то магнитное поле магнитов 9 выходит за пределы разрядной камеры 1 и взаимодействует с магнитным полем фокусирующей катушки 6 с образованием общей магнитной системы с величиной магнитной индукции на ее полюсах не менее 0,02Т при минимальном значении порядка 0,005Т (см. фиг.2). Если силовые линии постоянных магнитов 9 и фокусирующей катушки 6 совпадают, то они образуют общее магнитное поле, силовые линии которого (В) направлены по ходу движения электронов (е) в луче 8. Электроны, двигаясь вдоль силовых линий магнитного поля, попадают на ось фокусирующей катушки 6, даже если ось эмиссионного канала 5 смещена относительно оси фокусирующей катушки 6 до половины диаметра канала (а), величина которого составляет 0,8-1,5 мм. В результате в дальнейшем изменение величины тока электронного луча 8 в процессе работы пушки не сказывается на положении фокального пятна электронного луча 8, которое было задано при помощи отклоняющей системы 7.
   

Кол-во просмотров: 16415
Яндекс.Метрика