ВАЖНЫЕ НОВОСТИ
Минпромторг России поддержит российских производителей средств производства и автоматизации

Министерство промышленности и торговли Российской Федерации объявило о проведении дополнительного отбора российских производителей средств производства и автоматизации для возмещения убытков, связанных с предоставлением скидок покупателям при реализации продукции. Данная субсидия предоставляется в рамках трех федеральных проектов, входящих в национальный проект «Средства производства и автомати...

Горьковский автозавод представил на ЦИПР особо значимый проект по созданию комплексной системы управления жизненным циклом продукта и производством

Горьковский автозавод представил проект по внедрению цифровых систем управления жизненным циклом продукта и производством. Проект демонстрируется на площадке конференции «Цифровая индустрия промышленной России» (ЦИПР), которая проходит со 2 по 8 июня 2025 года в Нижнем Новгороде. Проект, внедрение которого началось в 2023 году, реализуется при поддержке Российского фонда развития информационных...

В Совете Федерации обсудили инструменты развития газохимической и нефтехимической отрасли Дальнего Востока

В Совете Федерации состоялось совещание на тему «Газификация и ее производные: газохимия и нефтехимия как драйвер роста экономики Дальневосточного федерального округа». Модератором заседания выступила заместитель директора департамента по привлечению инвестиций Корпорация развития Дальнего Востока и Арктики (КРДВ) Анастасия Набатчикова. Открывая мероприятие, член Комитета СФ по федеративному ус...

Президенту РФ предложили районы для пилотных проектов автоматизированных логистических центров

Ростовская и Нижегородская области могут стать пилотными площадками для реализации первых в России проектов создания комплексных автоматизированных логистических центров, где большую часть работы выполняют роботизированные системы, а не человек. С таким предложением выступил председатель совета директоров ГК "Интратул" Сергей Терентьев на встрече президента РФ Владимира Путина с представителями ро...

Вместе делаем Россию сильнее. Москва и Магадан договорились о совместном развитии промышленности

Столица стала наставником Магаданской области по развитию промышленного потенциала. Москва поделится опытом поддержки индустриального сектора, подготовки квалифицированных кадров для современного производства, развития особой экономической зоны, промышленного туризма, популяризации и другими эффективными практиками. Об этом сообщил Министр Правительства Москвы, руководитель Департамента инвестицио...

К2Тех поздравляет с наступающим Днем химика!

Химия — это не просто формулы, а основа прогресса. Благодаря работникам отрасли создаются умные материалы, чистые технологии и решения, которые меняют мир. Команда ИТ-компании К2Тех превратила классическую Таблицу Менделеева в интерактивную карту технологий: нажимайте на элементы и узнавайте, как предиктивная аналитика спасает oборудование, а 3D-печать ускоряет разработку деталей. Праз...

12 Октября 2011

Нейтрализация взрывоопасной смеси, образовавшейся в результате контакта воды с выплавляемым реакционным металлом.

Нейтрализация взрывоопасной смеси, образовавшейся в результате контакта воды с выплавляемым реакционным металлом.
Спocoб oбеcпечения взрывoбезoпаcнocти при экcплуатации вакуумнoй дугoвой печи для выплавки cлитков реакционных металлов
Споcоб обеcпечения взрывобезопаcноcти при экcплуатации вакуумной дуговой печи для выплавки cлитков реакционных металлов

Автор: Альтман Петр Семенович

Изобретение отноcитcя к цветной металлургии, преимущественно к способам вакуумной дуговой плавки высокореакционных металлов, в частности титана и его сплавов. В способе производят флегматизацию парогазовой смеси при аварийном образовании ее в рабочем пространстве. В качестве флегматизатора используют водяной пар, при этом в рабочем пространстве печи поддерживают давление, исключающее срабатывание возвратного клапана на период, равный времени охлаждения слитка. Изобретение позволяет нейтрализовать взрывоопасную смесь, образовавшуюся в результате контакта воды из системы охлаждения кристаллизатора с выплавляемым реакционным металлом, исключить детонацию взрывоопасной смеси. 1 ил.

Известна вакуумная дуговая печь, содержащая водоохлаждаемый кристаллизатор с предохранительным клапаном, защитную вакуумную камеру (бронекожух), электрододержатель, источник тока, систему вакуумирования (Плавка и литье титановых сплавов. /Андреев А.Л., Аношкин Н.Ф., Бочвар Г.А. и др. - М., "Металлургия", 1994, стр.150-156). Процесс ВДП заключается в переплаве расходуемых электродов на слиток электрической дугой при давлении 0,06-0,6 Па в водоохлаждаемом кристаллизаторе, состыкованном с вакуумной камерой.

Конструкция кристаллизатора испытывает большие тепловые нагрузки. Тепловые потоки через его стенку в зоне горения дуги и верхней части формирующегося слитка составляют от сотен до тысяч киловатт на квадратный метр, в аварийных ситуациях (при переброске дуги на стенку кристаллизатора) превосходят эту величину. С наружной стороны кристаллизатор охлаждается водой, находящейся под давлением не ниже 4 атм.

Общим событием, предшествующим и необходимым для создания аварийной ситуации, является повреждение стенки кристаллизатора, отделяющей внутреннее рабочее пространство от полости водяного охлаждения кристаллизатора. Повреждения происходят чаще всего в результате горения дугового разряда между расходуемым электродом и внутренней стенкой кристаллизатора. В этой ситуации предпринимаются меры пассивной защиты:
  • - отключается питание печи;
  • - уменьшается количество подаваемой охлаждающей воды;
  • - печь отключается от вакуумных насосов;
  • - срабатывают герметические возвратные клапаны.

(Плавка и литье титановых сплавов. Отв. редактор В.И.Добаткин. М., Металлургия, 1978, с.68). Однако это не исключается попадание воды в рабочий объем кристаллизатора.

Попадание воды на расплавленный металл, имеющий температуру более 1700°С, сопровождается интенсивным парообразованием. Это взаимодействие может быть импульсным (паровой взрыв) или замедленным.

Образовавшаяся парогазовая смесь заполняет рабочее пространство до момента открытия клапана, а если он не справляется, то и после. В последнем случае внутреннее давление может превысить прочность герметических соединений элементов конструкции печи, что приведет к разрушению наиболее слабого места и выходу смеси в бронекожух. Следует отметить, что энергия, выделяемая при паровом взрыве, гарантированно локализуется защитной камерой печи, имеющей многократный запас прочности.

Параллельно, с образованием пара, вода вступает в химическую реакцию с титаном с образованием свободного водорода. Не исключены также электролиз и термическая диссоциация воды с образованием водорода и кислорода.

Смешивание водорода с кислородом воздуха может произойти в результате выхода водорода в бронекожух и втекания воздуха в рабочее пространство печи через открывшиеся проемы и отверстия, причем эти процессы могут происходить одновременно.

Источник воспламенения - расплавленный металл - всегда имеется внутри печи. Кроме того, искры от удара клапана или металлических частей при их разрушении могут воспламенить водород, выходящий из печи и распространяющийся по объему бронекожуха с огромной скоростью. Последствия взрыва смеси воздуха и водорода несравнено более тяжелые и могут привести к разрушению не только собственно печи, но и защитного кожуха печи. Поэтому предотвращение взрыва является необходимым условием предотвращения аварий, приводящих к катастрофическим последствиям.

Для возникновения химического взрыва необходимы условия выхода водорода в защитный кожух с одновременным втеканием воздуха в печь, в результате чего взрывоопасная смесь образуется как внутри, так и вне рабочего объема кристаллизатора, и взрыв, начавшись внутри кристаллизатора, легко распространяется в бронекожух.

Считается, что детонация водорода в смеси с воздухом возможна при объемной концентрацией водорода от 13 до 70%. Предел воспламенения 9-74%.

Возможность детонации зависит от следующих факторов:
  • - относительной концентрации горючего и окислителя;
  • - концентрации флегматизатора (в предлагаемом изобретении - пара);
  • - начальных значений температуры и давления (плотность газа);
  • - формы и размера конструкции, в которой происходит детонация.

Из всех перечисленных факторов наиболее надежным и простым, с точки зрения осуществления, является исключения условий детонации с помощью регулирования концентрации флегматизатора.

Известен способ обеспечения взрывобезопасности при эксплуатации вакуумной дуговой печи для выплавки слитков реакционных металлов, заключающийся в подаче в защитную камеру сжиженного углекислого газа до создания в отсеке избыточного давления, при этом образуется смесь H2 и CO2, которая не подвержена взрыву (решение о выдаче патента от 30.01.2008 по заявке 2006134772 от 02.10.2006, МПК С22И 9/20 - прототип).

Недостатком указанных способов является необходимость наличия специального газового оборудования, обеспечивающие подачу углекислого газа в камеру печи.

Задачей, на решение которой направленно данное изобретение, является способ повышения взрывобезопасности плавления реакционных металлов как последняя возможность в цепи мер безопасности, когда использование известных существующих мер безопасности не предотвращает аварийную ситуацию, при которой во внутренний объем кристаллизатора попадает вода из системы охлаждения и образуется взрывоопасная смесь водорода и воздуха.

Техническим результатом, достигаемым при осуществлении изобретения, является нейтрализация взрывоопасной смеси, образовавшейся в результате контакта воды из системы охлаждения кристаллизатора с выплавляемым реакционным металлом, посредством обеспечения необходимой концентрации флегматизатора в объеме печи, исключающей детонацию взрывоопасной смеси.

Указанный технический результат при осуществлении изобретения достигается тем, что в способе обеспечения взрывобезопасности при эксплуатации вакуумной дуговой печи для выплавки слитков реакционных металлов, включающем флегматизацию парогазовой смеси при ее аварийном образовании в рабочем пространстве, в качестве флегматизатора используется водяной пар, при этом в рабочем пространстве печи поддерживается давление, исключающее срабатывание возвратного клапана на период, равный времени охлаждения слитка.

влияние содержания водяного пара на концентрационные пределы горючести и взрываемости водородовоздушной смесиНа чертеже показано влияние содержания водяного пара на концентрационные пределы горючести и взрываемости водородовоздушной смеси, а также на величину давления детонации. Из графика следует, что при содержании пара в смеси более 15% реализовать в ней детонационный режим невозможно, а при содержании пара более 55% смесь не горит.

Данный способ реализуется следующим образом.

При поступлении воды в рабочую зону печи выдаются команды на отключение источника тока, снижение расхода охлаждающей воды. Одновременно включается откачка печи водокольцевым форвакуумным насосом и система частичной конденсации пара, обеспечивающие поддержание давления в рабочем пространстве печи, исключающего срабатывание возвратного клапана на период, равный времени охлаждения слитка. Так как скорость парообразования на порядок больше скорости образования водорода, а последняя снижается по мере охлаждения слитка, в парогазовой смеси поддерживают необходимую концентрацию пара (>15%), обеспечивающую флегматизирующий эффект.

Расчеты показывают, что при поступлении в печи типа ДТВ потока воды 1÷2 кг/с (диаметр отверстия 10 мм) необходимые по давлению и содержанию пара-флегматизатора параметры парогазовой смеси обеспечиваются при суммарной производительности откачки и частичной конденсации ~6 м3/мин.

Предлагаемый способ обеспечивает безопасную эксплуатацию ВДП при выплавке реакционных металлов.

Кол-во просмотров: 16724
Яндекс.Метрика