ВАЖНЫЕ НОВОСТИ
Утверждена разработанная Росатомом и Ростехом дорожная карта по развитию высокотехнологичной области «Новые производственные технологии»

Дорожная карта по развитию высокотехнологичной области «Новые производственные технологии», разработанная Госкорпорацией «Росатом» совместно с Госкорпорацией Ростех, была утверждена 23 июля 2021 года президиумом Правительственной комиссии по цифровому развитию, использованию информационных технологий для улучшения качества жизни и условий ведения предпринимательской деятельности. Дорожная карта...

В России запущен онлайн-сервис «Готов к цифре»

В рамках национальной программы «Цифровая экономика» Минцифры России и консорциум по развитию цифровой грамотности запускают образовательный ресурс готовкцифре.рф. Новый портал является агрегатором сервисов по тестированию уровня цифровой грамотности, обучению безопасной и эффективной работе с цифровыми технологиями. В создании ресурса приняли участие 18 компаний, которые в марте этого года объ...

Общественный транспорт сокращает интервалы движения на МАКС

АО "Авиасалон", устроитель Международных авиационно-космических салонов, накануне выходных согласовало график движения общественного транспорта с сокращёнными интервалами. Увеличение количества составов пригородных поездов Казанского направления, а также числа автобусов, курсирующих между платформами "Отдых" и "Есенинская" и выставочным комплексом, позволяет обеспечить выполнение рекомендаций Росп...

Итоги первого дня работы авиасалона МАКС-2021

Работу XV Международного авиационно-космического салона МАКС-2021 открыл Президент Российской Федерации Владимир Путин. По традиции он обратился с приветствием к организаторам, участникам и гостям Салона, осмотрел экспозиции ведущих компаний, понаблюдал за демонстрационными полётами. Выступая на торжественной церемонии открытия авиасалона, он отметил, что МАКС, несмотря на сложности, вызванные ...

Минэнерго России разработало проект постановления по модернизации и строительству тепловой генерации в неценовых зонах

Минэнерго России разработало проект постановления Правительства РФ по модернизации и (или) строительству тепловой генерации в неценовых зонах энергорынка, куда входят регионы Дальнего Востока, Калининградская и Архангельская области, Республика Коми. Соответствующий проект прошёл процедуры общественного обсуждения и направлен на согласование в профильные ведомства. Документ определяет механизмы...

Столичный экспорт во Францию вырос более чем в три раза

По итогам первого квартала 2021 года московский несырьевой неэнергетический экспорт (ННЭ) во Францию вырос более чем в три раза и достиг 48,1 миллиона долларов США. На долю Москвы в общероссийском ННЭ во Францию за этот период пришлось более 22%, сообщил заместитель Мэра Москвы по вопросам экономической политики и имущественно-земельных отношений Владимир Ефимов . «Москва и Франция системно раз...

17 Ноября 2009

Плазмотрон

Плазмотрон

Автoры: Иcрафилoв Ирек Хуcнемарданoвич, Иcрафилoв Загир Хуcнимарданoвич, Иcрафилoв Даниc Ирекoвич, Галиакбарoв Азат Талгатoвич.

Изoбретение oтнocитcя к машинocтрoению, бoлее кoнкретнo к уcтрoйcтвам, генерирующим плазму для нагрева и oбрабoтки поверхноcтей различных изделий, для обработки непроводящих материалов, и может найти применение в машиноcтроении для закалки, отжига, поверхноcтной обработки, напыления и упрочнения изделий. Плазмотрон cодержит корпуc, два незамкнутых электрода c cоответcтвующими токоотводящими концами и канал для подачи плазмообразующего газа. Каждый электрод выполнен криволинейной формы, огибающей cечение обрабатываемой поверхности, причем электроды расположены параллельно друг другу. Использование изобретения позволит повысить скорость и равномерность при обработке вытянутых (длинномерных) изделий с неплоской (криволинейной) внешней или внутренней поверхностью с обеспечением работы без защиты источника питания от высоковольтного напряжения постоянно работающего осциллятора и обеспечит возможность работы как на постоянном, так и на переменном токе. 11 з.п. ф-лы, 8 ил.

Изобретение относится к машиностроению, более конкретно к устройствам, генерирующим плазму для нагрева и обработки поверхностей различных изделий, для обработки непроводящих материалов, и может найти применение в машиностроении для закалки, отжига, поверхностной обработки, напыления и упрочнения изделий.

Известен электродуговой плазмотрон, предназначенный для обработки металлических поверхностей плазменной струей, который содержит охлаждаемый катодный узел, корпус, одновременно являющийся изолятором, и сопловой узел со сменной вставкой, в которой происходит формирование плазменной струи. Патент Великобритании 1268843, H05H 4/10, 1970.

Известен плазмотрон, который состоит из двух кольцевых электродов, расположенных параллельно друг другу, соленоида постоянного тока, охватывающего оба электрода, и корпуса.

Плазмообразующий газ подают в промежуток между электродами и нагревают его вращающейся дугой. Дуга вращается под воздействием электродинамических сил, возникающих в результате взаимодействия тока дуги и магнитного поля, создаваемого соленоидом. За счет вращения дуга охватывает значительную поверхность. Жуков М.Ф. и др. Электродуговые нагреватели газа. М.: «Наука», 1973, с.25.

Решаемая техническая задача предлагаемого плазмотрона - повышение скорости и равномерности при обработке вытянутых (длинномерных) изделий с неплоской (криволинейной) внешней или внутренней поверхностью, с обеспечением работы без защиты источника питания от высоковольтного напряжения постоянно работающего осциллятора и возможность работы как на постоянном, так и на переменном токе.

Решаемая техническая задача в плазмотроне, содержащем корпус, два незамкнутых электрода с соответствующими токоподводящими концами, канал для подачи плазмообразующего газа, достигается тем, что каждый электрод выполнен в заданной криволинейной форме, причем электроды расположены параллельно друг другу.

Под незамкнутостью электродов подразумевается расстояние порядка геометрического размера сечения обрабатываемой поверхности.

Рассмотрим предлагаемый плазмотрон по первому примеру в работе (фиг.2).

Обрабатываемое изделие 7, в данном случае форма обрабатываемого изделия должна соответствовать трубе, устанавливают снаружи так, чтобы оно располагалось на заданном постоянном расстоянии, например, равном 10 мм, от электродов 2 и 3 плазмотрона, огибающих корпус 1. Организуют подачу и отвод охлаждающей жидкости через патрубки 41, 42 соответственно к электроду 2 и 51, 52 соответственно к электроду 3. Между электродами 2 и 3 закрепляют дополнительный элемент - металлическую проволоку (на чертеже не показана) для зажигания электрической дуги. Электроды 2 и 3 через патрубки 41 и 51 подключают к источнику питания, например, с выходными характеристиками силы тока I=150А и напряжения U=150B. В межэлектродном пространстве 6 происходит пробой при помощи металлической проволоки, в результате чего возникает электрическая дуга, которая под действием электродинамических сил перемещается между электродами 2 и 3, начиная с места зажигания. Организуют подачу плазмообразующего газа через канал - межэлектродное расстояние 6.

Двигаясь, дуга разогревает подаваемый газ, образуя низкотемпературную плазму большого объема и площади, подаваемый на изделие 7. Плазмотрон перемещают вдоль изделия 7 внутри него. Быстрое перемещение дуги между электродами 2 и 3 позволяет нагревать протяженные обрабатываемые поверхности изделий с высокой скоростью, не разрушая изделие 7. Такая дуга эквивалентна распределенному источнику тепла.

Скорость перемещения дуги при силе тока 100-600 А достигает 10-25 м/с (определялось с помощью скоростной киносъемки). Поскольку дуга перемещается по замкнутой линии между электродами 2 и 3, а электроды незамкнутые, то она доходит до разрыва каждого электрода. Имея большую скорость, ионизированный газ дуги пролетает через разрыв электродов 2 и 3, где снова зажигается дуга. Дуга горит постоянно и циклы повторяются. Так как длина электродов 2 и 3 довольно велика, например 30 см, то дуга проходит по относительно большой площади, нагревает значительный объем газа, который нагревает обрабатываемую поверхность изделия 7. Это позволяет осуществлять обработку больших протяженных цилиндрических поверхностей, например труб, перемещаемых вдоль плазмотрона, сохраняя при этом промежуток между обрабатываемой поверхностью изделия и электродами 2 и 3, например, равным 10 мм, что приводит к более равномерному нагреву, для повышения качества термообработки. Обрабатываемое изделие перемещают, используя средство для перемещения, например универсальный промышленный робот ПР-35. Белянин П.Н. Промышленные роботы и их применение: Робототехника для машиностроения. 2-е. изд., перераб. и доп. - М.: Машиностроение, 1983. с.106-143.

Описания работы второго-седьмого примеров конкретной реализации плазмотрона аналогичны описанию первого примера конкретной реализации плазмотрона, описанного выше. Работа пятого примера конкретной реализации плазмотрона отличается тем, что корпус 4 огибает электроды 15 и 16, а обрабатываемое изделие 7 устанавливают внутри плазмотрона, и изделие 7 огибается электродами 15 и 16. Работа седьмого примера конкретной реализации плазмотрона отличается тем, что корпус 18 огибает электроды 19 и 20, а обрабатываемое изделие 7 устанавливают внутри плазмотрона, и изделие 7 огибается электродами 19 и 20.

Плазмотрон предлагаемой конструкции по сравнению с прототипом позволяет повысить скорость и улучшить равномерность при обработке изделий с неплоской (криволинейной) внешней или внутренней поверхностью (т.к. плазмотрон имеет более равномерный нагрев, как сказано выше). Кроме того, упрощается сама конструкция плазмотрона, уменьшаются габариты, достигается равномерный нагрев обрабатываемой поверхности.


Формула изобретения

1. Плазмотрон, содержащий корпус, два незамкнутых электрода с соответствующими токоотводящими концами и канал для подачи плазмообразующего газа, отличающийся тем, что каждый электрод выполнен криволинейной формы, огибающей сечение обрабатываемой поверхности, причем электроды расположены параллельно друг другу.

2. Плазмотрон по п.1, отличающийся тем, что каждый электрод выполнен из стержня в виде незамкнутого кольца.

3. Плазмотрон по п.1, отличающийся тем, что каждый электрод выполнен из стержня в виде незамкнутого эллипса.

4. Плазмотрон по п.1, отличающийся тем, что каждый электрод выполнен из стержня в виде незамкнутого четырехугольника с заданным закруглением R электродов в районе углов, где R - радиус закругления углов.

5. Плазмотрон по п.1, отличающийся тем, что каждый электрод выполнен из стержня в виде незамкнутого треугольника с заданным закруглением R электродов в районе углов, где R - радиус закругления углов.

6. Плазмотрон по п.1, отличающийся тем, что каждый электрод выполнен из стержня в виде незамкнутого многоугольника с заданным закруглением R электродов в районе углов, где R - радиус закругления углов.

7. Плазмотрон по п.1, отличающийся тем, что электроды имеют одинаковую форму и одинаковые размеры формы.

8. Плазмотрон по п.1, отличающийся тем, что электроды имеют одинаковую форму и различные размеры формы.

9. Плазмотрон по п.1, отличающийся тем, что корпус и электроды выполнены и расположены так, что корпус огибает электроды.

10. Плазмотрон по п.1, отличающийся тем, что корпус и электроды выполнены и расположены так, что электроды огибают корпус.

11. Плазмотрон по п.1, отличающийся тем, что каждый электрод выполнен из трубки.

12. Плазмотрон по п.1, отличающийся тем, что каждый электрод выполнен из стержня.


Кол-во просмотров: 9399
На правах рекламы