ВАЖНЫЕ НОВОСТИ
По итогам января-сентября 2024 года рынок новых автомобилей в России превысил 1 млн 341 тыс. шт.

По итогам января-сентября 2024 года на территории Российской Федерации реализовано 1 341 549 новых автомобилей (до 3-х лет), что на 48% больше показателей аналогичного периода прошлого года (906 293 шт.)*. При этом рынок новых автомобилей отечественного производства превысил 585 тыс. шт., что на 29% больше показателей января-сентября 2023 года. Объём рынка в сегменте легковых автомобилей состав...

Денис Мантуров провел заседание Государственной комиссии по противодействию незаконному обороту промышленной продукции

Заседание Государственной комиссии по противодействию незаконному обороту промышленной продукции прошло под председательством первого Заместителя Председателя Правительства Российской Федерации Дениса Мантурова. В мероприятии приняли участие Министр промышленности и торговли Российской Федерации Антон Алиханов, представители Минпромторга России, других федеральных органов исполнительной власти, а ...

Правительство утвердило долгосрочную шкалу индексации утилизационного сбора на автомобильную и специализированную технику

Утверждена долгосрочная шкала индексации утилизационного сбора до 2030 года для легковых, лёгких коммерческих, грузовых автомобилей, автобусов, прицепов и полуприцепов, а также для некоторых видов дорожно-строительной техники. Постановление Правительства Российской Федерации вступит в силу с 1 октября 2024 года. Напомним, что ранее Минпромторгом России были собраны и проанализированы предложени...

Минпромторгом России утверждены изменения в Перечене продукции для параллельного импорта

Минпромторг России внес очередные изменения в перечень товаров, в отношении которых не применяются требования о защите интеллектуальных прав со стороны правообладателей (патентообладателей), и, которые были введены в оборот за пределами территории Российской Федерации. Механизм параллельного импорта действует уже более двух лет и за это время доказал свою эффективность, позволив обеспечить потр...

Строительство малой атомной станции в Якутии включено в новый президентский нацпроект

Проект строительства малой атомной станции в Усть-Янском районе Якутии стал частью национального проекта в области технологического лидерства «Новые атомные и энергетические технологии». Атомная станция малой мощности (АСММ) с реакторной установкой Ритм-200Н, расположенная рядом с поселком Усть-Куйга, будет играть ключевую роль в развитии Арктической зоны Якутии. Завершение строительства планирует...

Компания АЛРОСА добыла в Якутии 260-каратный алмаз на месторождении Эбелях

Компания «Алмазы Анабара», входящая в группу АЛРОСА, в конце лета 2024 года добыла на месторождении Эбелях, расположенном в Анабарском районе Республики Саха (Якутия), крупный алмаз ювелирного качества весом 262,5 карата. Это прозрачный монокристалл с единичными включениями графит-сульфида и легкими следами ожелезнения, характерный для данного месторождения. Находка была сделана ночью во время про...

18 Мая 2011

Повышение качества профилей за счет совмещения технологических операций конфигурации в осевом направлении в стапеле.

Повышение качества профилей за счет совмещения технологических операций конфигурации в осевом направлении в стапеле.
Спocoб изгoтoвления прoфилей c регламентирoваннoй кривизнoй и уcтройcтво для его оcущеcтвления
Споcоб изготовления профилей c регламентированной кривизной и уcтройcтво для его оcущеcтвления

Авторы: Смирнов Владимир Григорьевич, Полудин Алекcандр Витальевич, Галкин Андрей Валерьевич, Зобнин Виктор Иванович, Мальцевич Вячеcлав Владимирович

Изобретение относится к области самолетостроения, в частности к способу изготовления каркасных силовых элементов конструкции летательного аппарата преимущественно из титановых сплавов. В способе изготовления профилей с регламентированной кривизной продольное сечение профиля формируют при температуре выше температуры полиморфного превращения в канале стапеля, имеющего регламентированные геометрические размеры, производя последовательное заполнение канала по мере выпрессовки профиля из матрицы. Правку и термообработку профиля осуществляют непосредственно в стапеле без его разборки. К матричному узлу устройства крепится съемный разборный стапель, в котором выполнен канал, форма внутреннего поперечного сечения канала частично или полностью подобна наружной форме поперечного сечения прессуемого профиля. Внутренние размеры сечения канала выполнены на 0,5-3 мм больше подобных наружных размеров сечения профиля. Канал выполнен таким образом, что пространственное положение осей его сечений в продольном направлении совпадает с пространственным положением осей сечений готового профиля. Изобретение обеспечивает повышение качества получаемых профилей и производительности за счет совмещения технологических операций прессования и формирования его конфигурации в осевом направлении в стапеле. 3 ил.

Основой конструкции фюзеляжа и крыльев самолета является тонкостенная пространственная оболочка, подкрепленная изнутри силовым каркасом. Простые каркасные детали обычно изготавливаются из прессованных или гнутых профилей различного сечения и, как правило, имеют в продольном направлении изогнутые в пространстве оси.

В основе своей существующие технологии базируются на осуществлении операций, которые по времени выполнения не имеют жесткой связи, и для каждой технологической операции используется полностью своя технологическая оснастка, при этом перед каждой операцией производится предварительный нагрев заготовки. Технологические операции осуществляются в следующей последовательности:
  • - прессование профиля (формирование геометрической формы поперечного сечения);
  • - правка растяжением с обеспечением технических требований по прямолинейности, кривизне и скручиванию, обрезка захватов;
  • - термообработка (снятие внутренних напряжений и получение заданных свойств материала);
  • - гибка и правка профиля (формирование геометрической формы профиля в осевом направлении);
  • - термообработка (снятие внутренних напряжений и получение заданных свойств материала).

Из-за неоднородности физико-механических свойств материала по длине и в поперечных сечениях заготовки геометрическая форма профилей в процессе деформации и термообработки подвергается значительным искажениям и в общем случае требуются значительные трудовые, временные и финансовые ресурсы для достижения тех результатов, которые предусмотрены техническими условиями на готовую продукцию.

Поскольку требование к геометрической форме профиля в самолетостроении жесткие, то необходимо максимально нивелировать вредные факторы, искажающие геометрию профиля.

Известен способ термосиловой обработки (термоправки) осесимметричных длинномерных деталей, включающий предварительную обработку детали, закрепление на детали распорных втулок, установку детали с втулками в многослойный стапель, фиксацию детали за счет контакта со сферической поверхностью, установку стапеля с деталью в печь, нагрев до определенной температуры, выдержку до достижения необходимого уровня равномерности деформаций и охлаждение (патент РФ 2235794, МПК C21D 9/06, публ. 10.09.2004). Техническим результатом изобретения является повышение точности и стабильности геометрических параметров, повышение эксплуатационной точности готовых изделий.

Недостатком изобретения является его узкая специализация, которая позволяет его применение только для обработки изделий типа валов, которые прошли предварительную обработку.

Известны способ и устройство для изготовления криволинейных полых профилей, позволяющие получить прессованные профили с кривизной, которая может быть рассчитана заранее и легко воспроизводится, при этом даже у сложных профилей площадь сечения после гибки не изменяется по сравнению с площадью сечения до гибки (европейский патент EP 0706843Б1, МПК Б21С 23/12, публ. 20.01.1999 г. - прототип).

Способ включает изгиб профиля поперечной силой одновременно с прессованием или непосредственно после него, при котором в процессе прессования составляющая изгибающего усилия воздействует на сечение образующих стенок профиля как растягивающая или сжимающая сила, при этом гибочный инструмент расположен в свободном пространстве после выхода профиля из матрицы. Профиль подвергается операции гибки нажимным устройством при температуре прессования сразу после выхода из матрицы. В принципе изобретение позволяет задать любые углы путем соответствующей настройки гибочного приспособления, в том числе и при пространственной гибки, а также закрутку профиля.

Основным недостатком изобретения является его относительно небольшая точность, обусловленная низкой точностью операции гибки, на которую будут наслаиваться погрешности операций термообработки. Потенциально искажение геометрических размеров и формы может возникать как в сечении, так и по оси профиля, что ведет к нестабильности технологического процесса (делает проблематичным использование данной технологии в самолетостроении).

Целью данного изобретения является предложение способа для изготовления криволинейных профилей, позволяющего получить прессованный профиль, удовлетворяющий требованиям точности, предъявляемым к изделиям, используемым в современных самолетных конструкциях, и устройства для его осуществления.

Техническим результатом, достигаемым при применении предлагаемого изобретения, является совмещение технологических операций прессования профиля и формирования его конфигурации в осевом направлении в стапели, а также использование данного стапеля в процессе термической обработки, что позволяет:
  • - изготовлять прессованный профиль, по точности близкий или равноценный механически обработанному профилю, т.к. наружный профиль контура соответствует внутреннему механически обработанному контуру стапеля;
  • - в процессе термообработки происходит термоправка изделия в стапеле вследствие этого исключается накопление погрешностей в геометрических размерах и форме профилей, возникающих в процессе термообработки изделий из-за неоднородности физико-механических свойств материала по длине, а также в поперечных сечениях заготовки, в результате происходит повышение эксплуатационной точности готовых изделий.

Указанный технический результат достигается тем, что в способе изготовления профилей с регламентированной кривизной, включающем формирование поперечного сечения профиля прессованием, формирование продольного сечения профиля непосредственно после прессования, отделение пресс-остатка, правку и термообработку, продольное сечение профиля формируют при температуре выше температуры полиморфного превращения в канале стапеля, имеющего регламентированные геометрические размеры, производя последовательное заполнение канала по мере выпрессовки профиля из матрицы, а правку и термообработку профиля осуществляют непосредственно в стапеле без его разборки.

Для уменьшения сил трения между каналом стапеля и внутренней поверхностью профиля на поверхность канала стапеля наносится смазка.

Предложенный способ реализуется с помощью устройства для изготовления профилей с регламентированной кривизной, содержащего пресс с матричным узлом, к матричному узлу крепится съемный разборный стапель, в котором выполнен канал, форма внутреннего поперечного сечения канала частично или полностью подобна наружной форме поперечного сечения прессуемого профиля, а внутренние размеры сечения канала выполнены на 0,5-3 мм больше подобных наружных размеров сечения профиля, при этом канал выполнен таким образом, что пространственное положение осей его сечений в продольном направлении совпадает с пространственным положением осей сечений готового профиля.

Изобретение поясняется чертежами, где на фиг.1 показано устройство для изготовления профилей с регламентированной кривизной, на фиг.2 - поперечное сечение профиля, продольный вид профиля, на фиг.3 - продольный вид профиля.
устройство для изготовления профилей с регламентированной кривизнойпоперечное сечение профиляпродольный вид профиля
Приспособление содержит (фиг.1) матричный узел 1, состоящий из матрицы 2, матрицедержателя 3, опорного кольца 4, матричный узел крепится к инструментальной доске 5, к опорному кольцу крепится разъемный стапель 6, в котором расположен канал 7, стапель монтируется на стол пресса 8 посредством кронштейнов 9.

Способ осуществляется следующим образом: заготовку 10 размещают в контейнере 11, под действием пресс-штемпеля (не показан) происходит распрессовка заготовки 10 через матричный узел 1. Прессованный профиль 12 из матричного узла поступает в канал 7 стапеля. Скорость прессования титановых сплавов достаточно высокая, а размерная длина профиля подбирается из условий, чтобы температура профиля не опускалась ниже температуры полиморфного превращения в процессе размещения его в канале стапеля. Это позволяет получить профиль, имеющий кривизну в различных пространственных плоскостях, а также его закрутку. Для уменьшения сил трения на поверхность канала рекомендуется наносить смазку. Для предотвращения заклинивания профиля в канале стапеля геометрические размеры его сечений выполнены на 0,2-3,0 мм больше геометрических размеров сечения профиля. После окончания операции прессования и отделения пресс-остатка стапель вместе с находящимся в нем профилем снимают со стола пресса. Последующая термообработка профиля производится в стапеле, для чего стапель размещают в нагревательных устройствах. После термообработки в материале профиля снимаются внутренние напряжения, и его геометрические размеры не искажаются после извлечения из стапеля.

Пример конкретного выполнения.

На горизонтальном гидравлическом трубопрофильном прессе усилием 3150 тс выпрессовывают профиль (фиг.2 и 3), имеющий в поперечном сечении площадь S=39,231 см2, длиной 4100 мм и радиусом кривизны R=2700 мм из сплава Ti-6Al-4V.

Нагрев заготовок производится до температуры 1030-1060°С, в процессе деформации наблюдается деформационный разогрев металла до температуры 1090-1120°С. После размещения заготовки выполняют прессование профиля со скоростью прессования порядка 1 м/с. Вся операция прессования длится около 4 секунд. За это время материал профиля не охлаждается ниже температуры полиморфного превращения 990°С, практически размещение профиля в канале стапеля происходит в -области, что гарантирует его высокие пластические свойства. Для предотвращения заклинивания профиля размеры поперечного сечения внутреннего контура стапеля выполнены больше наружного сечения профиля на 1,2-2 мм, на рабочую поверхность стапеля дополнительно наносится смазка. Полученный профиль полностью соответствовал требованиям чертежа.

Профиль со стапелем размещают в электрической печи, производят термообработку по режиму: 760°С, выдержка 2 часа, охлаждение на воздухе.

Преимущество данного способа заключается в том, что он:
  • - позволяет изготовить профили с регламентированной кривизной, которые максимально приближены по форме к готовым изделиям и соответствуют требованиям, предъявляемым к современным самолетным конструкциям;
  • - расширяет возможности стандартного прессового оборудования;
  • - повышает производительность процесса изготовления профилей за счет устранения трудоемких операций правки и повышает качество получаемых профилей.

Кол-во просмотров: 14834
Яндекс.Метрика