ВАЖНЫЕ НОВОСТИ
На реализацию Госпрограммы «Развитие промышленности и повышение ее конкурентоспособности» планируется выделить более 5 трлн рублей

Министр промышленности и торговли Российской Федерации Антон Алиханов принял участие в заседании Комитета Государственной Думы Российской Федерации по промышленности и торговле, который возглавляет депутат Госдумы Владимир Гутенев. На заседании также присутствовали представители ФОИВ, госкорпораций и других Комитетов Госдумы. Заседание Комитета было посвящено обсуждению проекта федерального бюд...

По итогам января-сентября 2024 года рынок новых автомобилей в России превысил 1 млн 341 тыс. шт.

По итогам января-сентября 2024 года на территории Российской Федерации реализовано 1 341 549 новых автомобилей (до 3-х лет), что на 48% больше показателей аналогичного периода прошлого года (906 293 шт.)*. При этом рынок новых автомобилей отечественного производства превысил 585 тыс. шт., что на 29% больше показателей января-сентября 2023 года. Объём рынка в сегменте легковых автомобилей состав...

Денис Мантуров провел заседание Государственной комиссии по противодействию незаконному обороту промышленной продукции

Заседание Государственной комиссии по противодействию незаконному обороту промышленной продукции прошло под председательством первого Заместителя Председателя Правительства Российской Федерации Дениса Мантурова. В мероприятии приняли участие Министр промышленности и торговли Российской Федерации Антон Алиханов, представители Минпромторга России, других федеральных органов исполнительной власти, а ...

Правительство утвердило долгосрочную шкалу индексации утилизационного сбора на автомобильную и специализированную технику

Утверждена долгосрочная шкала индексации утилизационного сбора до 2030 года для легковых, лёгких коммерческих, грузовых автомобилей, автобусов, прицепов и полуприцепов, а также для некоторых видов дорожно-строительной техники. Постановление Правительства Российской Федерации вступит в силу с 1 октября 2024 года. Напомним, что ранее Минпромторгом России были собраны и проанализированы предложени...

Минпромторгом России утверждены изменения в Перечене продукции для параллельного импорта

Минпромторг России внес очередные изменения в перечень товаров, в отношении которых не применяются требования о защите интеллектуальных прав со стороны правообладателей (патентообладателей), и, которые были введены в оборот за пределами территории Российской Федерации. Механизм параллельного импорта действует уже более двух лет и за это время доказал свою эффективность, позволив обеспечить потр...

Строительство малой атомной станции в Якутии включено в новый президентский нацпроект

Проект строительства малой атомной станции в Усть-Янском районе Якутии стал частью национального проекта в области технологического лидерства «Новые атомные и энергетические технологии». Атомная станция малой мощности (АСММ) с реакторной установкой Ритм-200Н, расположенная рядом с поселком Усть-Куйга, будет играть ключевую роль в развитии Арктической зоны Якутии. Завершение строительства планирует...

20 Мая 2011

Повышение точности калибровки бесплатформенных инерциальных навигационных систем

Повышение точности калибровки бесплатформенных инерциальных навигационных систем
Спocoб калибрoвки беcплатфoрменных инерциальных навигациoнных cиcтем
Спocoб калибрoвки беcплатфoрменных инерциальных навигациoнных cиcтем

Автoры: Андреев Алекcей Гурьевич, Ермакoв Владимир Сергеевич, Никoлаев Станиcлав Геoргиевич, Кoлеватов Андрей Петрович

Изобретение отноcитcя к облаcти прибороcтроения и может быть иcпользовано при cоздании бесплатформенных инерциальных систем управления для калибровки чувствительных элементов. Технический результат - повышение точности. Для достижения данного результата осуществляют определение калибровочных коэффициентов инерциальных измерителей с использованием модели ошибок бесплатформенной инерциальной навигационной системы. На первом этапе определяют входные сигналы модели ошибок навигационной системы и вектор ошибок системы. Входные сигналы модели ошибок системы являются функциями калибровочных коэффициентов инерциальных измерителей. На втором этапе по входным сигналам определяют калибровочные коэффициенты. 1 ил., 1 табл.

Известны способы калибровки гироскопов и акселерометров на двухосных калибровочных наклонно-поворотных столах (US 3736791, 1973; GB 1094396, 1964; RU 2044272, 1995; SU 1820219, 1993; RU 2121134, 1998; RU 98112966, 1998). Наиболее близким по технической сущности является способ определения коэффициентов модели инструментальных погрешностей навигационной системы (RU 98112966, 1998), использующий независимые суммарные погрешности навигационной системы, полученные путем вычитания из значений ускорений и угловых скоростей инерциальных измерителей значений ускорений и угловых скоростей, полученных независимым путем.

Сравнительный анализ с прототипом показал, что заявляемое изобретение отличается тем, что в нем для определения калибровочных коэффициентов инерциальных измерителей используется полный вектор измерения ошибок БИНС, а не ошибки измерения только ускорений и угловых скоростей акселерометрами и датчиками угловых скоростей (ДУСами), кроме того, система работает при калибровке в автономном (основном) режиме.

Техническим результатом изобретения является повышение точности калибровки инерциальных измерителей и точности работы БИНС.

Указанный технический результат достигается тем, что в процессе калибровки БИНС работает в автономном режиме, тем самым более полно учитываются не только инструментальные погрешности измерителей, но и снижается влияние принятых приближений при разработке бортового программного обеспечения БИНС.

Рассмотрим пример реализации предлагаемого способа калибровки на примере двухканальной БИНС, в которой в качестве ДУСов применяются волоконно-оптические гироскопы (ВОГи), модель ошибок которых примем в виде:



где - векторы шумов ВОГов; ni - ошибки типа «смещения» нуля соответствующих ВОГов; - матрица углов перекосов осей чувствительности ВОГов; x,y,z - проекции угловой скорости суточного вращения Земли; kd - диагональная матрица ошибок масштабных коэффициентов ВОГов, имеющая вид:



Матрица углов перекосов осей чувствительности ВОГов равна:



где ij - углы перекосов осей чувствительности ВОГов.

Модель ошибок акселерометров БИНС примем в виде:



где fn,i - ошибки типа «смещения» нуля акселерометров; - матрица углов перекосов осей чувствительности акселерометров:



где µij - углы перекосов осей чувствительности акселерометров; fi - проекции ускорения силы тяжести; - векторы шумов акселерометров; ka - диагональная матрица масштабных коэффициентов акселерометров, имеющая вид:



Структурная схема способа калибровки БИНС с использованием математической модели ошибок системыСтруктурная схема способа калибровки БИНС с использованием математической модели ошибок системы представлена на чертеже. На схеме блок 1 представляет калибруемую БИНС, которая установлена на калибровочном наклонно-поворотном столе (блок 2). В блоке 3 определяются векторы ошибок ВОГов и акселерометров j(i), fj(i) в соответствии с i-й ориентацией калибровочного НПС. В блоке 4 формируются математические модели ошибок БИНС в «i» ориентации НПС и их аналитические решения Vn(i), (i), (i), Ve(i), (i), (i). В блоке 5 формируются алгоритмы вычисления калибровочных коэффициентов инерциальных измерителей. Калибровочные коэффициенты определяются в два этапа. На первом этапе формируются алгебраические уравнения:



для определения входных сигналов математической модели ошибок северного канала n(i), fn(i) и входных сигналов математической модели ошибок восточного канала e(i), fe(i), которые являются функциями ошибок инерциальных измерителей и калибровочных сигналов в i-й ориентации калибровочного НПС. На втором этапе по алгебраическим суммам входных сигналов математических моделей ошибок северного и восточного каналов БИНС определяются калибровочные коэффициенты инерциальных измерителей.

Аналитические решения Vn(i), (i), Ve(i), (i), представленные в выражениях (7), получим для самого простого варианта модели ошибок БИНС:





Системы дифференциальных уравнений (8) и (9) описывают ошибки северного и восточного каналов двухканальной БИНС. Они получены с использованием упрощений, заключающихся в том, что пренебрегли перекрестными связями между каналами, которые приводят к появлению в решениях членов, представляющих суточные колебания с периодами близкими 24 часам. Аналитические решения систем (8) и (9) тогда включают только шулеровские колебания с периодами 84,4 минуты:



где s=1,24·10-3 с-1 - частота шулеровских колбаний.

Упрощения можно сделать в силу того, что при калибровке время работы БИНС в каждой ориентации калибровочного НПС не превышает 2-3 минут. В этом случае алгебраические уравнения (7) для i-й ориентации калибровочного НПС можно представить в виде:



где коэффициенты и имеют конкретные числовые значения на момент времени t=t·l, l=0, 1, 2, ; i - номер ориентации; R-радиус Земли. Решив эти системы уравнений методом Крамера, получим выражения для определения входных сигналов модели ошибок БИНС:



Определением входных сигналов модели ошибок БИНС заканчивается первый этап. На втором этапе по выражениям (12) определяем значения калибровочных коэффициентов инерциальных измерителей. Калибровочные коэффициенты определяются по уравнениям:



в уравнениях (13) в левых частях стоят алгебраические суммы аналитических входных сигналов модели ошибок БИНС, определенные в соответствии с принятыми моделями ошибок инерциальных измерителей, для различных ориентации калибровочного НПС, а в правых частях алгебраические суммы рассчитанных входных сигналов для тех же условий.

Введем восемь ориентации калибровочного НПС в соответствии с таблицей.

ориентацииУглы положения калибровочного НПС относительно системы координат с географической ориентацией осей
1=0°; =0°; =45°.
2=90°; =45°; =0°.
3=180°; =0°; =315°.
4=270°; =315°; =0°.
5=0°; =0°; =225°.
6=90°; =45°; =180°.
7=180°; =0°; =135°.
8=90°; =225°; =0°.


Для указанных в таблице ориентаций калибровочного НПС можно сформировать определения калибровочных коэффициентов ВОГа, установленного по оси ОХ БИНС, совпадающей с продольной осью объекта, четыре алгебраических уравнения, по числу неизвестных калибровочных коэффициентов эти уравнения соответствуют первому уравнению системы (13):



Решив систему (14), получим выражения для определения калибровочных коэффициентов ВОГа, установленного по оси ОХ:

;



Для ВОГов, установленных по осям OY и OZ, для определения их калибровочных коэффициентов можно сформировать аналогичные уравнения для указанных выше ориентаций калибровочного НПС.

Для определения калибровочных коэффициентов акселерометров используется второе уравнение системы (13) по аналогичной методике. Так калибровочные коэффициенты акселерометра, установленного по оси ОХ, определяются по следующим выражениям:



Калибровочные коэффициенты акселерометров, установленных по осям OY и OZ, определяются по аналогичной методике.

Кол-во просмотров: 20238
Яндекс.Метрика