ВАЖНЫЕ НОВОСТИ
Вызовы цифровизации энергетики: Росатом выступает за выработку цифровой этики

В ее преддверии директор по цифровизации Госкорпорации «Росатом» Екатерина Солнцева, выступая на глобальной сессии «Рост машин и цифровой потребитель» WEW-2021 (Всемирной энергетической недели), назвала четыре основных вызова, которые стоят перед цифровизацией энергетики. В их числе указаны гармонизация использования различных источников энергии, выработка новых бизнес-моделей для изменений в стр...

Ветропарки Росатома выработали 1 млн мегаватт-часов «зеленой» энергии

В Ставропольском крае открыта третья ветроэлектростация – Бондаревская ВЭС установленной мощностью 120 МВт. На сегодняшний день на юге России действуют уже пять ветроэнергетических станций Росатома, общая установленная мощность которых составляет 660 МВт. Строительство еще одного ветропарка – Медвеженской ВЭС в Ставропольском крае мощностью 60 МВт будет завершено до конца этого года. Ф...

Ростех завершил испытания второго газогенератора российского двигателя для «Суперджета»

Объединенная двигателестроительная корпорация Ростеха успешно завершила испытания второго опытного газогенератора – «сердца» двигателя ПД-8, предназначенного для самолета SSJ-NEW. В рамках испытаний была подтверждена корректная работа узлов, требуемые параметры температуры и давления, соответствие экологическим нормам. Следующим этапом проекта станут стендовые испытания первого опытного обра...

Власть и бизнес обсудят актуальные вопросы промышленности на XVI Национальном конгрессе «Модернизация промышленности России: приоритеты развития»

5 и 6 октября 2021 года в Центре цифрового лидерства состоится XVI Национальный конгресс «Модернизация промышленности России: приоритеты развития». Национальный конгресс входит в перечень основных мероприятий Года науки и технологий, утвержденных Правительством Российской Федерации. Ключевая тема мероприятия в 2021 году – «Комплексная модернизация отраслей промышленности». В программе Нац...

В Якутске к 2025 году построят Парк будущих поколений стоимостью 1,5 млрд рублей за счет инвестора

В Якутске до 2025 года появится Парк будущих поколений для создания городской экосистемы полезного досуга, творческого, интеллектуального, духовного и физического развития детей и молодежи. Комплекс будет построен на территории 2,4 га. Планируемый объем вложений в проект составит около 1,5 млрд рублей. Соответствующее соглашение подписали инвестиционно-строительная фирма «Дирекция по строительс...

На Байконуре идет активная подготовка нескольких транспортных кораблей

В монтажно-испытательном корпусе площадки № 254 космодрома Байконур начался заключительный этап испытаний транспортного грузового корабля «Прогресс МС-18», который оставался в режиме хранения на техническом комплексе с августа 2020 года. Он стал третьим космическим кораблем разработки и производства Ракетно-космической корпорации «Энергия», проходящим предстартовую подготовку вместе с пилотируемым...

23 Декабря 2009

Система электропитания объектов

Система электропитания объектов

Автoр: Чаcoвcкoй Алекcандр Абрамoвич

 
Изoбретение oтнocитcя к электрoтехнике и мoжет быть иcпoльзoванo для oбеcпечения экoнoмнoгo пoтребления электрoэнергии. Техничеcкий результат cocтоит в увеличении времени вращения вала. Сиcтема cодержит электродвигатель, жеcтко cвязанный c cинхронным генератором c возбудителем, имеющим первый, второй и третий выходы, cоединенные c первым, вторым и третьим входами потребляемых узлов. Первый выход cоединен также через трехфазный стабилизатор и выпрямитель с вторым входом автоматического расцепителя, имеющего первый вход, соединенный с выходом источника тока и имеющего выход, соединенный с входом электродвигателя. Обеспечивается возможность использования в качестве стабилизатора однофазного стабилизатора с выпрямителем, имеющего вход, соединенный только с первым выходом синхронного генератора с возбудителем. 1 ил.


Изобретение относится к области электротехники и может быть использовано для электропитания объектов.
Известна система электропитания объектов, представленная в патенте автора 2284644 в виде системы автономного электропитания. В ней с помощью двигателя осуществляется вращение вала синхронного генератора с возбудителей, от которого трехфазное напряжение поступает к потребляемым узлам. Трехфазное напряжение также поступает в выпрямитель и далее после стабилизации постоянное напряжение подается через автоматический расцепитель в электродвигатель. С помощью расцепителя в зависимости от величины напряжения осуществляется подключение то источника питания, то стабилизатора к электродвигателю.

Благодаря обратной связи обеспечивается вращение вала электродвигателя какое-то время без источника питания. Однако время вращения вала электродвигателя невозможно увеличить.

Известна система электропитания объектов, изложенная в патенте 2316108. В ней в источнике тока используется переменный источник, который может быть и однофазный, выдающий напряжение в постоянный источник, имеющий выход, соединенный с входом электродвигателя, работающего от постоянного тока. При этом реостат, регулирующий ток, может входить в состав электродвигателя. В отличии от вышеупомянутого первого аналога, используется трехфазный стабилизатор, выдающий три фазы в выпрямитель. Однако время вращения вала электродвигателя невозможно увеличить.

С помощью предлагаемой системы увеличивается время вращения вала электродвигателя.

Достигается это обеспечением возможности использования в качестве стабилизатора однофазного стабилизатора с выпрямителем, имеющего вход, соединенный только с первым выходом синхронного генератора с возбудителем.

На чертеже и в тексте приняты следующие обозначения:

1 - источник тока;

2 - автоматический расцепитель;

3 - электродвигатель

4 - синхронный генератор с возбудителем;

5 - однофазный стабилизатор с выпрямителем;

6 - потребляемые узлы,

при этом выход источника тока 1 соединен с первым входом автоматического расцепителя 2, имеющим выход и второй вход, соответственно соединенные с входом электродвигателя 3, и через однофазный стабилизатор с выпрямителем, с первым выходом синхронного генератора с возбудителем 4, жестко связанного с электродвигателем 3 и имеющим второй и третий выходы, соединенные соответственно с вторым и третьим входами потребляемых узлов 6.


Работа системы осуществляется следующим образом.


Источник тока 1 выдает с первого выхода постоянное или однофазное переменное напряжение через автоматический расцепитель 2 на первый вход электродвигателя 3.


В качестве электродвигателя может быть использован электродвигатель постоянного тока или универсальный коллекторный электродвигатель. Последний может работать от постоянного или переменного тока. Для регулировки постоянного тока в электродвигателе используется реостат. Вал электродвигателя 3 жестко связан с валом синхронного генератора с возбудителем 4, выдающего две фазы переменного напряжения в потребляемые узлы 6, а одну фазу только в стабилизатор 5.


Пример исполнения электродвигателя постоянного тока и универсального коллекторного электродвигателя представлен в книге М.М.Кацман «Справочник по электрическим машинам» стр.302-312, 2005 г.


Пример конкретного исполнения синхронного генератора с возбудителем 4 представлен, например в книге В.А.Китаев «Электротехника с основами промышленной электроники» М., Высшая школа, 1985, стр.139, рис.94. Одна фаза с выхода генератора 4 поступает в однофазный стабилизатор с выпрямителем 5. В нем при уменьшении в определенных пределах однофазного переменного напряжения на входе на выходе имеет место номинальное однофазное переменное напряжение или постоянное напряжение, поступающее в вышеупомянутый автоматический расцепитель 2. Автоматический расцепитель 2 при отсутствии номинального напряжения с выхода стабилизатора подключает выход источника тока 1 к электродвигателю 3. Далее после увеличения частоты вращения вала электродвигателя, устанавливается номинальное напряжение на выходе стабилизатора 5, выдающего напряжение в автоматический расцепитель 2, который подключает к электродвигателю 3 вышеупомянутый стабилизатор 5. Таким образом, благодаря обратной связи между первым выходом трехфазного синхронного генератора с возбудителем 4 и входом электродвигателя 3, осуществляется в течение более длительного времени вращение вала электродвигателя без подключения источника тока.
Пример конкретного исполнения однофазного стабилизатора, к которому может подключаться выпрямитель и обеспечена выдача стабилизированного постоянного или переменного напряжения представлен в книге М.А.Шустов «Источник питания и стабилизаторы» 2007, М., Альтекс, стр.144, рис.11.5; 11.19. При этом выпрямитель в стабилизаторе 5 может быть выполнен и со сглаживающим фильтром, а возникающие пульсации не влияют на работоспособность электродвигателя. Это отмечено в вышеупомянутой книге М.М. Кацман «Справочник по электрическим машинам» на стр.309, а также на стр.311, где отмечено, что и при переменном токе фазовые сдвиги и пульсации не нарушают работу двигателя.
Пример конкретного исполнения автоматического расцепителя представлен, например в книге «Электротехника и основы электроники» Е.С.Траубе и В.Г.Миргородский, 1985, стр.142, 143.


В связи с этим, благодаря использованию первой фазы генератора 4 только для обратной связи с электродвигателем 1, увеличивается время вращения вала электродвигателя.


Кроме того, при использовании универсального коллекторного электродвигателя увеличиваются функциональные возможности системы, так как осуществляется работа как от постоянного, так и переменного тока.


Предлагаемая система может быть использована для реализации экономного потребления электроэнергии различными объектами, домами, фермами и т.д. Увеличение времени постоянного вращения вала электродвигателя обеспечивает экономический эффект.

Кол-во просмотров: 9439
На правах рекламы