ВАЖНЫЕ НОВОСТИ
Владимир Путин провел переговоры с Мухаммедом бен Заидом Аль Нахайяном

Президент Российской Федерации Владимир Путин встретился со своим коллегой, Президентом Объединённых Арабских Эмиратов Мухаммедом бен Заидом Аль Нахайяном. С российской стороны также участвовал заместитель Председателя Правительства Российской Федерации – Министр промышленности и торговли Российской Федерации Денис Мантуров, который является сопредседателем Межправительственной Российско-Эми...

Разработчики стендовой базы для ПАК ДА стали лауреатами премии имени Б.И. Тихомирова

На площадке холдинга «Технодинамика» Госкорпорации Ростех состоялось награждение победителей премии в области промышленного строительства и проектирования имени Бориса Ивановича Тихомирова. Премия присуждается за работы, вносящие значительный вклад в развитие проектирования и строительства объектов промышленного назначения и внедрение передовых инженерных, проектных, технических и технологических ...

Правительство утвердило сроки проведения эксперимента по маркировке отдельных видов радиоэлектронной продукции

Эксперимент по маркировке отдельных видов радиоэлектронной продукции будет проводиться с 1 декабря 2023 г. по 28 февраля 2025 г. Сроки определены постановлением Правительства Российской Федерации от 25 ноября 2023 г. № 1993. Участие в эксперименте является добровольным для всех участников оборота продукции. В рамках предлагаемого эксперимента будут изучены технологии, связанные с нанесением ...

Росатом стал лауреатом премии за вклад в этику искусственного интеллекта

Госкорпорация «Росатом» стала лауреатом премии «За содействие в сфере развития этики искусственного интеллекта». Церемония награждения состоялась накануне в пресс-центре ТАСС в рамках Форума этики искусственного интеллекта «Поколение GPT. Красные линИИ». Премия в номинации «За вклад в развитие этики в сфере искусственного интеллекта» была вручена госкорпорации за продвижение принципов ответстве...

Михаил Мишустин провёл стратсессию по переходу промышленности на отечественную цифровую систему поддержки полного жизненного цикла изделий

Председатель Правительства Российской Федерации Михаил Мишустин провёл стратегическую сессию по переходу промышленности на отечественную цифровую систему поддержки полного жизненного цикла изделий. В мероприятии принял участие заместитель Председателя Правительства Российской Федерации – Министр промышленности и торговли Российской Федерации Денис Мантуров. Михаил Мишустин напомнил о зад...

Российский дальнемагистральный самолет Ил-96-400М совершил свой первый полет

Опытный образец российского широкофюзеляжного дальнемагистрального самолета Ил-96-400М, изготовленный в филиале ПАО «Ил» – ВАСО, входящем в Объединенную авиастроительную корпорацию Ростеха, впервые поднялся в воздух. В ходе полета выполнялась проверка устойчивости, управляемости воздушного судна, работоспособности систем, силовой установки и радиотехнических средств захода на посадку. Програ...

16 Апреля 2010

Повышение эффективности работы призматического детектора

Повышение эффективности работы призматического детектора

Автoры: Бoгoлюбoв Евгений Петрoвич, Микерoв Виталий Иванoвич 

Изoбретение oтнocитcя к региcтрации рентгенoвcкoгo и гамма-излучений, к oпределению их энергетичеcкoгo cпектра, к медицинcкoй рентгенoвcкoй тoмографии, к неразрушающему контролю материалов и изделий радиографичеcким и томографичеcким методами, к обнаружению иcточников ионизирующих излучений, к контролю cодержимого багажа на контрольно-пропуcкных пунктах. Техничеcкий результат - повышение эффективноcти, понижение порога обнаружения иcточника излучений, раcширение cпектрометричеcких возможноcтей. В призматическом детекторе, содержащем последовательные детекторные элементы, внешние поверхности которых покрыты слоями защитного материала, и фотоприемные устройства, каждый детекторный элемент, выполненный в виде треугольной призмы с элементом, отражающим свет, расположенным на наклонной поверхности призмы, содержит слой сцинтиллятора, а фотоприемные устройства расположены на общем основании, а светочувствительная поверхность детекторного элемента и поверхность слоя сцинтиллятора расположены во взаимно перпендикулярных плоскостях. 3 ил.
1.JPG



Известен детектор проникающих излучений, содержащий волоконный модуль, собранный из сцинтиллирующих оптических волокон, оптическую систему регистрации излучения, выходящего из торцов этих волокон.

2.JPG
Волоконный модуль выполнен в виде комбинированного люминесцентного экрана-преобразователя, сцинтиллирующие волокна которого составлены из последовательно соединенных отрезков различных типов сцинтиллирующих материалов.

Оптическая система содержит отклоняющее зеркало и не менее двух оптических каналов, выполненных в виде последовательно расположенных вдоль оси канала входного проекционного объектива со светофильтром, усилителя изображения, масштабирующего объектива, с которого световой поток попадает на ПЗС-матрицу. Патент Российской Федерации 8470.gif 2290666, МПК G01T 1/20, G01N 23/02, 2006 г.

Известен сцинтилляционный призматический детектор со сцинтилляторами различного типа с различными спектрами излучения и фотоприемниками.

Сцинтиллятор выполнен составным и содержит не менее двух составных элементов различного типа с различными спектрами излучения, установленных последовательно, на одном из торцов составного сцинтиллятора установлено такое же количество фотоприемников со спектральными чувствительностями или светофильтрами, согласованными с соответствующим типом составного элемента сцинтиллятора.

Для регистрации быстрых нейтронов использован пластиковый сцинтиллятор, для регистрации тепловых нейтронов сцинтиллятор изготовлен из кристалла 6LiF, а для регистрации рентгеновских и гамма-квантов сцинтиллятор изготовлен из кристалла NaI(T1). Патент Российской Федерации на полезную модель 8470.gif 76141, МПК G01T 1/20, 2008 г.

3.JPG

Известен сцинтилляционный призматический детектор, содержащий два разных сцинтиллятора, светящиеся в двух диапазонах длин волн, расположенных последовательно друг за другом.

Первый служит для регистрации мягкого рентгеновского излучения, второй - для регистрации жесткой компоненты.

Первый элемент сцинтиллятора включает гадолиний и имеет толщину от 0.03 мм до 0.06 мм; второй элемент сцинтиллятора включает отдельный кристаллический вольфрамат кадмия, толщиной от 2 мм до 3 мм.

Один из оптических датчиков включает кремниевый фотодиод. Полная толщина элементов сцинтиллятора от 1.0 мм до 10.0 мм.

Общая толщина сцинтиллирующих кристаллов достаточна для поглощения 99% всего излучения. Патент США  8470.gif 7388208, МПК G01T 1/00, 2008 г. Прототип.

Основным недостатком всех устройств является не полное разделение сигналов, возникающих в том или ином фотоприемнике по нескольким причинам:

- из-за частичного перекрытия спектров оптического излучения существующих прозрачных сцинтилляторов и не идеальности светофильтров, стоящих перед фотоприемниками, каждый из которых пропускает частично свет от другого сцинтиллятора,

- из-за амплитудного распределения энерговыделения в каждом из сцинтилляторов, обусловленного как спектром регистрируемого излучения, так и размером сцинтиллятора,

- из-за ослабления света в сцинтилляторах и светофильтрах.

Уменьшение влияния этого недостатка с помощью амплитудной дискриминации регистрируемого сигнала или другими средствами ведет к уменьшению эффективности детектора.

Недостатками устройств являются также низкая чувствительность обнаружения источников ионизирующих излучений из-за наличия собственных шумов фотоприемных устройств, невозможность учета вклада рассеянного в детекторе излучения, необходимость использования только прозрачных сцинтилляторов, отличающихся в необходимой степени спектром оптического излучения.

Изобретение устраняет недостатки аналога и прототипа.

Техническим результатом изобретения является повышение эффективности, понижение порога обнаружения источника излучений, расширение спектрометрических возможностей за счет применения набора сцинтилляционных детекторных элементов и последующей математической обработки количества поступивших с них сигналов, расширение спектра используемых сцинтилляционных материалов, включая дисперсные и порошковые.

Технический результат изобретения достигается тем, что в призматическом детекторе, содержащем последовательные детекторные элементы, внешние поверхности которых покрыты слоями защитного материала, и фотоприемные устройства, каждый детекторный элемент, выполненный в виде треугольной призмы с элементом, отражающим свет, расположенным на наклонной поверхности призмы, содержит слой сцинтиллятора, а фотоприемные устройства расположены на общем основании, а светочувствительная поверхность детекторного элемента и поверхность слоя сцинтиллятора расположены во взаимно перпендикулярных плоскостях.

Требуемое количество однотипных детекторных элементов в призматическом детекторе определяется назначением детектора и зависит от энергетического спектра регистрируемого излучения, а также материала сцинтиллятора.

Существо изобретения поясняется на чертежах.

На фиг.1 представлен детекторный призматический элемент, где: 1 - слой дисперсного или порошкового сцинтиллятора, 2 - треугольные призмы, 3 - фотоприемное устройство, 4 - элемент, отражающий свет, нанесенный на грань призмы, 5 - сцинтилляционная вспышка, 6 - клеевой слой с функцией оптического контакта.

На фиг.2 представлен вид детектора сверху, где: 1 - слои дисперсного или порошкового сцинтиллятора, 2 - треугольные призмы, 3 - фотоприемные устройства, 4 - элемент, отражающий свет, нанесенный на грань призмы, X - направление излучения, 7 - основание для крепления фотоприемных устройств.

Треугольные призмы 2 и элемент, отражающий свет, 4 выполнены из наименее ослабляющего регистрируемое излучение материала.

Например, для изготовления призм 2 использован прозрачный полимерный материал, в частности полиметилметакрилат, а элемент, отражающий свет, 4 изготовлен на основе слоев диэлектрика.

Вся конструкция помещена в светозащищенный корпус.

На фиг.3 представлена двухканальная схема обработки сигналов, где: 1 - слой дисперсного или порошкового сцинтиллятора; 2 - призматические сборки; 3, 31 - фотоприемные устройства, 8 и 81 - аналоговые усилители; 9 и 91 - дискриминаторы с регулируемыми порогами дискриминации; 10 - схема совпадений.

Устройство работает следующим образом.

Излучение в виде рентгеновского или гамма-кванта направляют на торец сцинтилляционного детектора (фиг.1).

При возбуждении квантом сцинтилляционной вспышки в одном из слоев сцинтиллятора дисперсного или порошкового сцинтиллятора 1 свет от сцинтилляционной вспышки 5 выходит в основном через поверхности слоя сцинтиллятора 1 в светоотражающие призмы 2.

В светоотражающих призмах 2 свет направляется элементом, отражающим свет (элемент 4), через клеевой слой (оптический контакт) 6 на фотоприемные устройства 3 и 31, в которых под его действием возникает электрический сигнал.

Сигналы с фотоприемников 3 и 31 (кремниевых фотоумножителей) поступают на аналоговые усилители 8 и 81, после которых аналоговый сигнал поступает на дискриминаторы 9 и 91 с регулируемыми порогами дискриминации (фиг.3).

Логические сигналы с дискриминаторов 9 и 91 идут на схему совпадений 10. В случае если на обоих входах схемы совпадений 8 появляются сигналы, схема совпадений 10 вырабатывает сигнал запроса, который хранится в выходном регистре схемы.

Внешний контроллер (не показан) опрашивает выходные регистры схемы совпадений 10 и в случае наличия в них сигнала (запроса) осуществляет считывание сигналов для их передачи в компьютер и дальнейшего анализа. Все логические схемы выполнены в стандарте ЭСЛ. В качестве дискриминаторов 9 и 91 использованы микросхемы AD 96687BP, а в качестве схемы совпадений 10 использована микросхема HEL (MC10LD1).

Количество сигналов запроса с каждого слоя по окончании регистрации анализируют и с помощью компьютерной программы производят восстановление спектра излучения.

Для восстановления спектра излучения источника решается система интегральных уравнений:

2386148.gif

где Qi - количество запросов с i-го слоя (пластины) многослойного детектора;

n - число слоев; Si(E) - чувствительность i-го слоя к потоку квантов с энергией Е;

966.gif(Е) - искомая энергетическая зависимость падающего на детектор потока квантов.

Система уравнений решается с использованием итерационного метода минимизации направленного расхождения. Тараско М.З. Метод минимума направленного расхождения в задачах поиска распределений. Препринт ФЭИ 8470.gif1446. Обнинск, 1983.

Кол-во просмотров: 13087
Яндекс.Метрика